Angiotensin is not required for hypoxic constriction in salt solution-perfused rat lungs - PubMed (original) (raw)
Angiotensin is not required for hypoxic constriction in salt solution-perfused rat lungs
I F McMurtry. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb.
Abstract
It has been reported that angiotensin II is specifically required for hypoxic vasoconstriction in rat lungs perfused with physiological salt solution. However, studies with other preparations indicate that angiotensin II does not play a necessary role in the mechanism of hypoxic vasoconstriction. In an attempt to resolve this disagreement I investigated in salt solution-perfused rat lungs whether vasoactive agents other than angiotensin II would induce hypoxic vasoconstriction, and, if so, whether the effect was due to selective action on the hypoxic mechanism or to a nonspecific increase in vascular reactivity. The results showed the development of hypoxic pressor responses after addition to perfusate of plasma, angiotensin II, KCl, vanadate, 4-aminopyridine, or norepinephrine plus propranolol. In contrast, addition of saline (control), ouabain, or tetraethylammonium chloride did not induce hypoxic vasoconstriction. Saralasin inhibited the effect of angiotensin II, but not that of plasma. Induction of responsiveness to hypoxia was associated with an increase in normoxic perfusion pressure and with potentiation of pressor responses to KCl. These results suggest that angiotensin II does not play a unique, integral role in the hypoxic mechanism, but instead is only one of many substances that will induce hypoxic pressor reactivity by reversing the vascular hyporeactivity of salt solution-perfused rat lungs.
Similar articles
- Dexamethasone potentiates hypoxic vasoconstriction in salt solution-perfused rat lungs.
Herget J, McMurtry IF. Herget J, et al. Am J Physiol. 1987 Sep;253(3 Pt 2):H574-81. doi: 10.1152/ajpheart.1987.253.3.H574. Am J Physiol. 1987. PMID: 3631295 - Effects of ouabain, low K+, and aldosterone on hypoxic pressor reactivity of rat lungs.
Herget J, McMurtry IF. Herget J, et al. Am J Physiol. 1985 Jan;248(1 Pt 2):H55-60. doi: 10.1152/ajpheart.1985.248.1.H55. Am J Physiol. 1985. PMID: 3970175 - Inhibition of glycolysis potentiates hypoxic vasoconstriction in rat lungs.
Stanbrook HS, McMurtry IF. Stanbrook HS, et al. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1467-73. doi: 10.1152/jappl.1983.55.5.1467. J Appl Physiol Respir Environ Exerc Physiol. 1983. PMID: 6643184 - Almitrine mimics hypoxic vasoconstriction in isolated rat lungs.
Gottschall EB, Fernyak S, Wuertemberger G, Voelkel NF. Gottschall EB, et al. Am J Physiol. 1992 Aug;263(2 Pt 2):H383-91. doi: 10.1152/ajpheart.1992.263.2.H383. Am J Physiol. 1992. PMID: 1510135 - [Pulmonary vasoconstrictor responses].
Onodera S. Onodera S. Nihon Kyobu Shikkan Gakkai Zasshi. 1992 Dec;30 Suppl:15-25. Nihon Kyobu Shikkan Gakkai Zasshi. 1992. PMID: 1363972 Review. Japanese.
Cited by
- Comparison of the effects of nicorandil, pinacidil and nitroglycerin on hypoxic and hypercapnic pulmonary vasoconstriction in the isolated perfused lung of rat.
Dumas M, Dumas JP, Rochette L, Advenier C, Giudicelli JF. Dumas M, et al. Br J Pharmacol. 1996 Feb;117(4):633-8. doi: 10.1111/j.1476-5381.1996.tb15237.x. Br J Pharmacol. 1996. PMID: 8646407 Free PMC article. - Functional pathophysiology of SARS-CoV-2-induced acute lung injury and clinical implications.
Habashi NM, Camporota L, Gatto LA, Nieman G. Habashi NM, et al. J Appl Physiol (1985). 2021 Mar 1;130(3):877-891. doi: 10.1152/japplphysiol.00742.2020. Epub 2021 Jan 14. J Appl Physiol (1985). 2021. PMID: 33444117 Free PMC article. Review. - Role of Kv7 channels in responses of the pulmonary circulation to hypoxia.
Sedivy V, Joshi S, Ghaly Y, Mizera R, Zaloudikova M, Brennan S, Novotna J, Herget J, Gurney AM. Sedivy V, et al. Am J Physiol Lung Cell Mol Physiol. 2015 Jan 1;308(1):L48-57. doi: 10.1152/ajplung.00362.2013. Epub 2014 Oct 31. Am J Physiol Lung Cell Mol Physiol. 2015. PMID: 25361569 Free PMC article. - Dihydropyridine Ca(2+) channel blockers increase cytosolic [Ca(2+)] by activating Ca(2+)-sensing receptors in pulmonary arterial smooth muscle cells.
Yamamura A, Yamamura H, Guo Q, Zimnicka AM, Wan J, Ko EA, Smith KA, Pohl NM, Song S, Zeifman A, Makino A, Yuan JX. Yamamura A, et al. Circ Res. 2013 Feb 15;112(4):640-50. doi: 10.1161/CIRCRESAHA.113.300897. Epub 2013 Jan 8. Circ Res. 2013. PMID: 23300272 Free PMC article. - Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release.
Connolly MJ, Prieto-Lloret J, Becker S, Ward JP, Aaronson PI. Connolly MJ, et al. J Physiol. 2013 Sep 15;591(18):4473-98. doi: 10.1113/jphysiol.2013.253682. Epub 2013 Jun 17. J Physiol. 2013. PMID: 23774281 Free PMC article.