Evolutionary relationship of DNA sequences in finite populations - PubMed (original) (raw)
Comparative Study
Evolutionary relationship of DNA sequences in finite populations
F Tajima. Genetics. 1983 Oct.
Abstract
With the aim of analyzing and interpreting data on DNA polymorphism obtained by DNA sequencing or restriction enzyme technique, a mathematical theory on the expected evolutionary relationship among DNA sequences (nucleons) sampled is developed under the assumption that the evolutionary change of nucleons is determined solely by mutation and random genetic drift. The statistical property of the number of nucleotide differences between randomly chosen nucleons and that of heterozygosity or nucleon diversity is investigated using this theory. These studies indicate that the estimates of the average number of nucleotide differences and nucleon diversity have a large variance, and a large part of this variance is due to stochastic factors. Therefore, increasing sample size does not help reduce the variance significantly The distribution of sample allele (nucleomorph) frequencies is also studied, and it is shown that a small number of samples are sufficient in order to know the distribution pattern.
Similar articles
- DNA polymorphism detectable by restriction endonucleases.
Nei M, Tajima F. Nei M, et al. Genetics. 1981 Jan;97(1):145-63. doi: 10.1093/genetics/97.1.145. Genetics. 1981. PMID: 6266912 Free PMC article. - Statistical analysis of DNA polymorphism.
Tajima F. Tajima F. Jpn J Genet. 1993 Dec;68(6):567-95. doi: 10.1266/jjg.68.567. Jpn J Genet. 1993. PMID: 8031577 - Relationship between DNA polymorphism and fixation time.
Tajima F. Tajima F. Genetics. 1990 Jun;125(2):447-54. doi: 10.1093/genetics/125.2.447. Genetics. 1990. PMID: 2379822 Free PMC article. - Statistical analysis of DNA sequences.
Weir BS. Weir BS. J Natl Cancer Inst. 1988 May 18;80(6):395-406. doi: 10.1093/jnci/80.6.395. J Natl Cancer Inst. 1988. PMID: 3285010 Review.
Cited by
- The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress.
Wang T, Ren L, Li C, Zhang D, Zhang X, Zhou G, Gao D, Chen R, Chen Y, Wang Z, Shi F, Farmer AD, Li Y, Zhou M, Young ND, Zhang WH. Wang T, et al. BMC Biol. 2021 May 6;19(1):96. doi: 10.1186/s12915-021-01033-0. BMC Biol. 2021. PMID: 33957908 Free PMC article. - Structural and genetic diversity in the secreted mucins MUC5AC and MUC5B.
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Plender EG, et al. Am J Hum Genet. 2024 Aug 8;111(8):1700-1716. doi: 10.1016/j.ajhg.2024.06.007. Epub 2024 Jul 10. Am J Hum Genet. 2024. PMID: 38991590 Free PMC article. - Properties and modeling of GWAS when complex disease risk is due to non-complementing, deleterious mutations in genes of large effect.
Thornton KR, Foran AJ, Long AD. Thornton KR, et al. PLoS Genet. 2013;9(2):e1003258. doi: 10.1371/journal.pgen.1003258. Epub 2013 Feb 21. PLoS Genet. 2013. PMID: 23437004 Free PMC article. - Selective sweep in the Flotillin-2 region of European Drosophila melanogaster.
Werzner A, Pavlidis P, Ometto L, Stephan W, Laurent S. Werzner A, et al. PLoS One. 2013;8(2):e56629. doi: 10.1371/journal.pone.0056629. Epub 2013 Feb 21. PLoS One. 2013. PMID: 23437190 Free PMC article. - Disentangling Ethiopian Honey Bee (Apis mellifera) Populations Based on Standard Morphometric and Genetic Analyses.
Hailu TG, D'Alvise P, Hasselmann M. Hailu TG, et al. Insects. 2021 Feb 25;12(3):193. doi: 10.3390/insects12030193. Insects. 2021. PMID: 33668715 Free PMC article.
References
- Theor Popul Biol. 1975 Apr;7(2):256-76 - PubMed
- Theor Popul Biol. 1974 Oct;6(2):217-50 - PubMed
- Proc Natl Acad Sci U S A. 1980 Jun;77(6):3605-9 - PubMed
- Genetics. 1978 Jul;89(3):583-90 - PubMed
- Theor Popul Biol. 1972 Mar;3(1):87-112 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources