The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys - PubMed (original) (raw)

The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys

H P Killackey et al. J Comp Neurol. 1983.

Abstract

Corpus callosum connections of parietal and motor cortex were studied in New World owl monkeys (Aotus trivirgatus) and Old World macaque monkeys (Macaca fascicularis) after multiple injections of 3H-proline and horseradish peroxidase, HRP, into one cerebral hemisphere, and extensive microelectrode mapping of architectonic Areas 3b, 1, and 2 of the other hemisphere. Results were obtained both from parasagittal brain sections cut orthogonal to the brain surface and from sections from flattened brains cut parallel to the brain surface. Cortical fields varied in density of callosal connections, and the density of connections varied according to body part within sensory representations. Thus, Area 3b had few, Area 1 had more, and Area 2 had relatively dense callosal connections. Within each of these fields, connections were much less dense for the representations of the glabrous hand and foot and much more dense for the representations of the face and trunk. For the representation of the hand, retrogradely labeled cells were extremely sparse in Area 3b, moderately sparse in Area 1, and moderate in Area 2. There were less dense callosal connections in the hand representations of Areas 3b, 1, and 2 in macaque as compared to owl monkeys. Label in posterior parietal cortex was uneven with zones of extremely dense connections. A large region of very dense callosal connections was noted in motor cortex just medial to the probable location of the hand representation. In all regions, callosally projecting cells appeared to be more broadly distributed than callosal terminations. In no region was the discontinuous arrangement of callosal connections obviously organized into an extensive pattern of mediolateral or rostrocaudal bands or strips.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources