Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina - PubMed (original) (raw)
Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina
P Witkovsky et al. Vision Res. 1983.
Abstract
This report summarizes some recent studies of the Xenopus retina in which intracellular recordings were made from photoreceptors, horizontal and bipolar cells. The studied cells were identified by injection of Lucifer yellow. Rod spectral sensitivity functions conformed to the density spectrum of a 524 nm pigment, those of cones to that of a 612 nm pigment. Horizontal cell responses reflected both these classes of photoreceptor input. Rod input evoked a slow waveform, with Vmax less than or equal to 18 mV, cone input a faster waveform with Vmax = 30-40 mV. In the mesopic state the horizontal response reflected both waveforms. Rod and cone inputs to the horizontal cells appeared not to act independently, in that a steady weak green background greatly enhanced the response to a superimposed red flash, but not the reverse. A third photoreceptor type (blue-sensitive rod, Y lambda max = 445 nm) provided input to a chromatic bipolar cell which was hyperpolarized by blue light and depolarized by red light. Such chromatic bipolars had broad areas of spatial integration and lacked center-surround organization.
Similar articles
- Intracellular recording from identified photoreceptors and horizontal cells of the Xenopus retina.
Hassin G, Witkovsky P. Hassin G, et al. Vision Res. 1983;23(10):921-31. doi: 10.1016/0042-6989(83)90001-9. Vision Res. 1983. PMID: 6649438 - Blue-sensitive rod input to bipolar and ganglion cells of the Xenopus retina.
Yang CY, Hassin G, Witkovsky P. Yang CY, et al. Vision Res. 1983;23(10):933-41. doi: 10.1016/0042-6989(83)90002-0. Vision Res. 1983. PMID: 6649439 - A chromatic horizontal cell in the Xenopus retina: intracellular staining and synaptic pharmacology.
Stone S, Witkovsky P, Schütte M. Stone S, et al. J Neurophysiol. 1990 Dec;64(6):1683-94. doi: 10.1152/jn.1990.64.6.1683. J Neurophysiol. 1990. PMID: 1705962 - Photoreceptor classes and transmission at the photoreceptor synapse in the retina of the clawed frog, Xenopus laevis.
Witkovsky P. Witkovsky P. Microsc Res Tech. 2000 Sep 1;50(5):338-46. doi: 10.1002/1097-0029(20000901)50:5<338::AID-JEMT3>3.0.CO;2-I. Microsc Res Tech. 2000. PMID: 10941170 Review. - Structure and function of photoreceptor and second-order cell mosaics in the retina of Xenopus.
Gábriel R, Wilhelm M. Gábriel R, et al. Int Rev Cytol. 2001;210:77-120. doi: 10.1016/s0074-7696(01)10004-5. Int Rev Cytol. 2001. PMID: 11580209 Review.
Cited by
- The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina.
Stone S, Witkovsky P. Stone S, et al. J Physiol. 1984 Aug;353:249-64. doi: 10.1113/jphysiol.1984.sp015334. J Physiol. 1984. PMID: 6481623 Free PMC article. - Kinetics of exocytosis is faster in cones than in rods.
Rabl K, Cadetti L, Thoreson WB. Rabl K, et al. J Neurosci. 2005 May 4;25(18):4633-40. doi: 10.1523/JNEUROSCI.4298-04.2005. J Neurosci. 2005. PMID: 15872111 Free PMC article. - Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina.
Van Hook MJ, Thoreson WB. Van Hook MJ, et al. Physiol Rep. 2015 Sep;3(9):e12567. doi: 10.14814/phy2.12567. Physiol Rep. 2015. PMID: 26416977 Free PMC article. - Kinetics of synaptic transmission at ribbon synapses of rods and cones.
Thoreson WB. Thoreson WB. Mol Neurobiol. 2007 Dec;36(3):205-23. doi: 10.1007/s12035-007-0019-9. Epub 2007 Jul 10. Mol Neurobiol. 2007. PMID: 17955196 Free PMC article. Review. - Immunocytochemical analysis of photoreceptors in the tiger salamander retina.
Zhang J, Wu SM. Zhang J, et al. Vision Res. 2009 Jan;49(1):64-73. doi: 10.1016/j.visres.2008.09.031. Epub 2008 Nov 25. Vision Res. 2009. PMID: 18977238 Free PMC article.