Temperature elevation in a beam of ultrasound - PubMed (original) (raw)
Temperature elevation in a beam of ultrasound
W L Nyborg et al. Ultrasound Med Biol. 1983 Nov-Dec.
Abstract
Computations are made of the temperature elevation expected at points along the axis of an unfocussed beam of ultrasound in a homogeneous absorbing medium. A simplified model is used in which the intensity is assumed uniform over a cross section. Heat conduction is taken into account, but not convection or perfusion. Results are presented for frequencies from 1 to 10 MHz and beam diameters from 0.2 to 2.4 cm. The results include limiting temperatures, reached at infinite time, as well as temperature vs time characteristics. As an example for certain conditions (transducer diameter 1.2 cm, frequency 4 MHz, intensity at the transducer 0.1 W/cm2, tissue acoustically similar to liver, transducer thermal conductivity similar to that of tissue) the temperature elevation produced at a distance 2 cm from the transducer is calculated to be 0.61 degrees C after 253 s; it then increases more and more slowly, approaching, but never exceeding 1.46 degrees C.
Similar articles
- Temperature rise generated by ultrasound in the presence of contrast agent.
Wu J. Wu J. Ultrasound Med Biol. 1998 Feb;24(2):267-74. doi: 10.1016/s0301-5629(97)00246-9. Ultrasound Med Biol. 1998. PMID: 9550185 - Temperature elevations computed for three-layer and four-layer obstetrical tissue models in nonlinear and linear ultrasonic propagation cases.
Wójcik J, Filipczyński L, Kujawska T. Wójcik J, et al. Ultrasound Med Biol. 1999 Feb;25(2):259-67. doi: 10.1016/s0301-5629(98)00144-6. Ultrasound Med Biol. 1999. PMID: 10320315 - Temperature elevation generated by a focused Gaussian beam of ultrasound.
Wu JR, Du GH. Wu JR, et al. Ultrasound Med Biol. 1990;16(5):489-98. doi: 10.1016/0301-5629(90)90171-8. Ultrasound Med Biol. 1990. PMID: 2238255 - Temperature change in lumbar periarticular tissue with continuous ultrasound.
Morrisette DC, Brown D, Saladin ME. Morrisette DC, et al. J Orthop Sports Phys Ther. 2004 Dec;34(12):754-60. doi: 10.2519/jospt.2004.34.12.754. J Orthop Sports Phys Ther. 2004. PMID: 15643730 - Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
Ross AB, Diederich CJ, Nau WH, Rieke V, Butts RK, Sommer G, Gill H, Bouley DM. Ross AB, et al. Med Phys. 2005 Jun;32(6):1555-65. doi: 10.1118/1.1924314. Med Phys. 2005. PMID: 16013714
Cited by
- Design aspects of focal beams from high-intensity arrays.
Stephens D, Kruse D, Qin S, Ferrara K. Stephens D, et al. IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Aug;58(8):1590-602. doi: 10.1109/TUFFC.2011.1986. IEEE Trans Ultrason Ferroelectr Freq Control. 2011. PMID: 21859578 Free PMC article. - Short-duration-focused ultrasound stimulation of Hsp70 expression in vivo.
Kruse DE, Mackanos MA, O'Connell-Rodwell CE, Contag CH, Ferrara KW. Kruse DE, et al. Phys Med Biol. 2008 Jul 7;53(13):3641-60. doi: 10.1088/0031-9155/53/13/017. Epub 2008 Jun 19. Phys Med Biol. 2008. PMID: 18562783 Free PMC article. - Ultrasound-biophysics mechanisms.
O'Brien WD Jr. O'Brien WD Jr. Prog Biophys Mol Biol. 2007 Jan-Apr;93(1-3):212-55. doi: 10.1016/j.pbiomolbio.2006.07.010. Epub 2006 Aug 8. Prog Biophys Mol Biol. 2007. PMID: 16934858 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources
Research Materials