Photoreactivating enzyme from Streptomyces griseus-IV. On the nature of the chromophoric cofactor in Streptomyces griseus photoreactivating enzyme - PubMed (original) (raw)
Photoreactivating enzyme from Streptomyces griseus-IV. On the nature of the chromophoric cofactor in Streptomyces griseus photoreactivating enzyme
A P Eker et al. Photochem Photobiol. 1981 Jan.
No abstract available
Similar articles
- Photoreactivating enzyme from Streptomyces griseus--II. Evidence for the presence of an intrinsic chromophore.
Eker AP. Eker AP. Photochem Photobiol. 1980 Nov;32(5):593-600. doi: 10.1111/j.1751-1097.1980.tb04027.x. Photochem Photobiol. 1980. PMID: 6784130 No abstract available. - Photoreactivating enzyme from Streptomyces griseus--VI. Action spectrum and kinetics of photoreactivation.
Eker AP, Hessels JK, Dekker RH. Eker AP, et al. Photochem Photobiol. 1986 Aug;44(2):197-205. doi: 10.1111/j.1751-1097.1986.tb03586.x. Photochem Photobiol. 1986. PMID: 3095857 No abstract available. - Evidence for the presence of an essential arginine residue in photoreactivating enzyme from Streptomyces griseus.
Eker AP. Eker AP. Biochem J. 1985 Jul 15;229(2):469-76. doi: 10.1042/bj2290469. Biochem J. 1985. PMID: 3929771 Free PMC article. - [The photorepair of pyrimidine dimers by DNA photolyase].
Okamura T. Okamura T. Tanpakushitsu Kakusan Koso. 1994 Mar;39(3):221-30. Tanpakushitsu Kakusan Koso. 1994. PMID: 8153355 Review. Japanese. No abstract available. - [Photochemical reactions and photoreactivation of DNA].
Hélène C, Charlier M. Hélène C, et al. Biochimie. 1978;60(10):1111-21. Biochimie. 1978. PMID: 367450 Review. French. No abstract available.
Cited by
- Identification and characterization of a prokaryotic 6-4 photolyase from Synechococcus elongatus with a deazariboflavin antenna chromophore.
Chen S, Liu C, Zhou C, Wei Z, Li Y, Xiong L, Yan L, Lv J, Shen L, Xu L. Chen S, et al. Nucleic Acids Res. 2022 Jun 10;50(10):5757-5771. doi: 10.1093/nar/gkac416. Nucleic Acids Res. 2022. PMID: 35639925 Free PMC article. - Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases.
Prorok P, Grin IR, Matkarimov BT, Ishchenko AA, Laval J, Zharkov DO, Saparbaev M. Prorok P, et al. Cells. 2021 Jun 24;10(7):1591. doi: 10.3390/cells10071591. Cells. 2021. PMID: 34202661 Free PMC article. Review. - Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.
Greening C, Ahmed FH, Mohamed AE, Lee BM, Pandey G, Warden AC, Scott C, Oakeshott JG, Taylor MC, Jackson CJ. Greening C, et al. Microbiol Mol Biol Rev. 2016 Apr 27;80(2):451-93. doi: 10.1128/MMBR.00070-15. Print 2016 Jun. Microbiol Mol Biol Rev. 2016. PMID: 27122598 Free PMC article. Review. - Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair.
Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. Rastogi RP, et al. J Nucleic Acids. 2010 Dec 16;2010:592980. doi: 10.4061/2010/592980. J Nucleic Acids. 2010. PMID: 21209706 Free PMC article. - Critical role of 7,8-didemethyl-8-hydroxy-5-deazariboflavin for photoreactivation in Chlamydomonas reinhardtii.
Petersen JL, Ronan PJ. Petersen JL, et al. J Biol Chem. 2010 Oct 15;285(42):32467-75. doi: 10.1074/jbc.M110.146050. Epub 2010 Aug 9. J Biol Chem. 2010. PMID: 20696762 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources