The heat-shock response in Xenopus oocytes is controlled at the translational level - PubMed (original) (raw)
The heat-shock response in Xenopus oocytes is controlled at the translational level
M Bienz et al. Cell. 1982 Jul.
Abstract
Xenopus laevis oocytes respond to high temperature (greater than 31 degrees C) by the synthesis of one major (70 kilodalton) protein and by a gradual reduction in the rate of normal protein synthesis. In contrast with most other cells, the heat-shock response of Xenopus oocytes is controlled exclusively at the translational level. Enucleated or alpha-amanitin-injected oocytes synthesize normal levels of heat-shock protein. Thus high temperature induces the translation of preformed heat-shock mRNA. This continues for more than a day after a shift back to a normal temperature, but ceases within 2 days. Heat-shock protein synthesis can be sequentially induced and inactivated in the same oocyte over several days. We conclude that an oocyte contains 10-100 pg of heat-shock mRNA, which is synthesized during oogenesis at the normal temperature, and which is stored in an inactive state by a "masking" mechanism.
Similar articles
- Do Xenopus oocytes have a heat shock response?
King ML, Davis R. King ML, et al. Dev Biol. 1987 Feb;119(2):532-9. doi: 10.1016/0012-1606(87)90056-x. Dev Biol. 1987. PMID: 3803717 - Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes.
Horrell A, Shuttleworth J, Colman A. Horrell A, et al. Genes Dev. 1987 Jul;1(5):433-44. doi: 10.1101/gad.1.5.433. Genes Dev. 1987. PMID: 3678830 - Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes.
Voellmy R, Rungger D. Voellmy R, et al. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1776-80. doi: 10.1073/pnas.79.6.1776. Proc Natl Acad Sci U S A. 1982. PMID: 6804945 Free PMC article. - Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
Gordon S, Bharadwaj S, Hnatov A, Ali A, Ovsenek N. Gordon S, et al. Dev Biol. 1997 Jan 1;181(1):47-63. doi: 10.1006/dbio.1996.8441. Dev Biol. 1997. PMID: 9015264 - The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins.
Heikkila JJ, Kaldis A, Morrow G, Tanguay RM. Heikkila JJ, et al. Biotechnol Adv. 2007 Jul-Aug;25(4):385-95. doi: 10.1016/j.biotechadv.2007.03.003. Epub 2007 Mar 28. Biotechnol Adv. 2007. PMID: 17459646 Review.
Cited by
- Locus encoding a family of small heat shock genes in Caenorhabditis elegans: two genes duplicated to form a 3.8-kilobase inverted repeat.
Russnak RH, Candido EP. Russnak RH, et al. Mol Cell Biol. 1985 Jun;5(6):1268-78. doi: 10.1128/mcb.5.6.1268-1278.1985. Mol Cell Biol. 1985. PMID: 4033652 Free PMC article. - Heat shock and recovery are mediated by different translational mechanisms.
DiDomenico BJ, Bugaisky GE, Lindquist S. DiDomenico BJ, et al. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6181-5. doi: 10.1073/pnas.79.20.6181. Proc Natl Acad Sci U S A. 1982. PMID: 6815647 Free PMC article. - Heat shock phenomena in Aspergillus nidulans. I. The effect of heat on mycelial protein synthesis.
Stephanou G, Demopoulos NA. Stephanou G, et al. Curr Genet. 1986;10(11):791-6. doi: 10.1007/BF00418524. Curr Genet. 1986. PMID: 3329035 - Oolemmal proteomics--identification of highly abundant heat shock proteins and molecular chaperones in the mature mouse egg and their localization on the plasma membrane.
Calvert ME, Digilio LC, Herr JC, Coonrod SA. Calvert ME, et al. Reprod Biol Endocrinol. 2003 Feb 14;1:27. doi: 10.1186/1477-7827-1-27. Reprod Biol Endocrinol. 2003. PMID: 12646049 Free PMC article. - Transcriptional and translational control of adenovirus gene expression.
Logan JS, Shenk T. Logan JS, et al. Microbiol Rev. 1982 Dec;46(4):377-83. doi: 10.1128/mr.46.4.377-383.1982. Microbiol Rev. 1982. PMID: 6761573 Free PMC article. Review. No abstract available.