Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase - PubMed (original) (raw)
Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase
R C Mulligan et al. Proc Natl Acad Sci U S A. 1981 Apr.
Abstract
Cultured monkey (TC7) and mouse (3T6) cells synthesize an Excherichia coli enzyme, xanthine-guanine phosphoribosyltransferase (XGPRT; 5-phospho-alpha-D-ribose-1-diphosphate:xanthine phosphoribosyltransferase, EC 2.4.2.22), after transfection with DNA vectors carrying the corresponding bacterial gene, Ecogpt. In contrast to mammalian cells, which do not efficiently use xanthine for purine nucleotide synthesis, cells that produce E. coli XGPRT can synthesize GMP from xanthine via XMP. After transfection with vector-Ecogpt DNAs, surviving cells producing XGPRT can be selectively grown with xanthine as the sole precursor for guanine nucleotide formation in a medium containing inhibitors (aminopterin and mycophenolic acid) that block de novo purine nucleotide synthesis. Cells transformed for Ecogpt arise with a frequency of 10(-4) to 10(-5); they appear to be genetically stable in as much as there is no discernible decrease in XGPRT formation or loss on their ability to grow in selective medium after propagation in nonselective medium. Although several of the vector-gpt DNAs can replicate in monkey and mouse cells, none of the transformants contain autonomously replicating vector-gpt DNA. Rather, the gpt transformants contain one to five copies of the transfecting DNA associated with, and most probably integrated into, cellular DNA sequences. In several transformants, vector-coded gene products for which there was no selection are also synthesized. This suggests that recombinant DNAs containing Ecogpt as a selective marker can be useful for cotransformation of nonselectable genes.
Similar articles
- Transformation of teratocarcinoma stem cells and fibroblasts with various vectors containing the Eco.gpt gene as a selection marker.
Thillet J, Kunst F, Lasserre C, Bucchini D, Pictet R, Jami J. Thillet J, et al. Exp Cell Res. 1984 Apr;151(2):494-501. doi: 10.1016/0014-4827(84)90398-7. Exp Cell Res. 1984. PMID: 6323202 - Factors governing the expression of a bacterial gene in mammalian cells.
Mulligan RC, Berg P. Mulligan RC, et al. Mol Cell Biol. 1981 May;1(5):449-59. doi: 10.1128/mcb.1.5.449-459.1981. Mol Cell Biol. 1981. PMID: 6100966 Free PMC article. - Expression of a bacterial gene in mammalian cells.
Mulligan RC, Berg P. Mulligan RC, et al. Science. 1980 Sep 19;209(4463):1422-7. doi: 10.1126/science.6251549. Science. 1980. PMID: 6251549 - Escherichia coli gpt as a positive and negative selectable marker in embryonal stem cells.
Spring KJ, Mattick JS, Don RH. Spring KJ, et al. Biochim Biophys Acta. 1994 Jun 21;1218(2):158-62. doi: 10.1016/0167-4781(94)90005-1. Biochim Biophys Acta. 1994. PMID: 8018715 - Expression of adenovirus E1a and E1b gene products and the Escherichia coli XGPRT gene in KB cells.
Babiss LE, Young CS, Fisher PB, Ginsberg HS. Babiss LE, et al. J Virol. 1983 May;46(2):454-65. doi: 10.1128/JVI.46.2.454-465.1983. J Virol. 1983. PMID: 6341621 Free PMC article.
Cited by
- Transient dominant selection for the modification and generation of recombinant infectious bronchitis coronaviruses.
Keep SM, Bickerton E, Britton P. Keep SM, et al. Methods Mol Biol. 2015;1282:115-33. doi: 10.1007/978-1-4939-2438-7_12. Methods Mol Biol. 2015. PMID: 25720477 Free PMC article. - AFB(1) -induced mutagenesis of the gpt gene in AS52 cells.
Wattanawaraporn R, Kim MY, Adams J, Trudel LJ, Woo LL, Croy RG, Essigmann JM, Wogan GN. Wattanawaraporn R, et al. Environ Mol Mutagen. 2012 Aug;53(7):567-73. doi: 10.1002/em.21711. Epub 2012 Jun 26. Environ Mol Mutagen. 2012. PMID: 22733615 Free PMC article. - Random isolation of gene activator elements from the human genome.
Hamada H. Hamada H. Mol Cell Biol. 1986 Dec;6(12):4185-94. doi: 10.1128/mcb.6.12.4185-4194.1986. Mol Cell Biol. 1986. PMID: 3025643 Free PMC article. - Stabilization of the p53 transformation-related protein in mouse fibrosarcoma cell lines: effects of protein sequence and intracellular environment.
Halevy O, Hall A, Oren M. Halevy O, et al. Mol Cell Biol. 1989 Aug;9(8):3385-92. doi: 10.1128/mcb.9.8.3385-3392.1989. Mol Cell Biol. 1989. PMID: 2529426 Free PMC article. - Multiple sequence elements are required for regulation of human T-cell leukemia virus gene expression.
Rosen CA, Park R, Sodroski JG, Haseltine WA. Rosen CA, et al. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4919-23. doi: 10.1073/pnas.84.14.4919. Proc Natl Acad Sci U S A. 1987. PMID: 3037527 Free PMC article.
References
- Nature. 1979 Jan 11;277(5692):108-14 - PubMed
- Proc Natl Acad Sci U S A. 1977 Dec;74(12):5350-4 - PubMed
- Nature. 1979 Mar 29;278(5703):428-34 - PubMed
- Cell. 1979 Apr;16(4):777-85 - PubMed
- J Virol. 1979 Apr;30(1):279-96 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases