Conformational preferences of amino acids in globular proteins - PubMed (original) (raw)
Conformational preferences of amino acids in globular proteins
M Levitt. Biochemistry. 1978.
Abstract
In a previous paper [Levitt, M., and Greer, J. (1977), J. Mol. Biol. 114, 181--239], an objective compilation of the secondary-structure regions in more than 50 different globular proteins was produced automatically. In the present paper, these assignments of secondary structure are analyzed to give the frequency of occurrence of the 20 naturally occurring amino acids in alpha helix, beta sheet, and reverse-turn secondary structure. Nineteen of these amino acids have a weak but statistically signficant preference for only on type of secondary structure. These preferences correlate well with the chemical structure of the particular amino acids giving a more objective classification of the conformational properties of amino acids than available before.
Similar articles
- Third type of secondary structure: noncooperative mobile conformation. Protein Data Bank analysis.
Adzhubei AA, Eisenmenger F, Tumanyan VG, Zinke M, Brodzinski S, Esipova NG. Adzhubei AA, et al. Biochem Biophys Res Commun. 1987 Aug 14;146(3):934-8. doi: 10.1016/0006-291x(87)90736-4. Biochem Biophys Res Commun. 1987. PMID: 3619942 - Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
Stapley BJ, Doig AJ. Stapley BJ, et al. J Mol Biol. 1997 Sep 26;272(3):456-64. doi: 10.1006/jmbi.1997.1250. J Mol Biol. 1997. PMID: 9325103 - Approaching a complete classification of protein secondary structure.
Adzhubei AA, Eisenmenger F, Tumanyan VG, Zinke M, Brodzinski S, Esipova NG. Adzhubei AA, et al. J Biomol Struct Dyn. 1987 Dec;5(3):689-704. doi: 10.1080/07391102.1987.10506420. J Biomol Struct Dyn. 1987. PMID: 3271488 - [A turning point in the knowledge of the structure-function-activity relations of elastin].
Alix AJ. Alix AJ. J Soc Biol. 2001;195(2):181-93. J Soc Biol. 2001. PMID: 11727705 Review. French. - The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
Seebach D, Beck AK, Bierbaum DJ. Seebach D, et al. Chem Biodivers. 2004 Aug;1(8):1111-239. doi: 10.1002/cbdv.200490087. Chem Biodivers. 2004. PMID: 17191902 Review.
Cited by
- Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7.
Linhartova K, Falginella FL, Matl M, Sebesta M, Vácha R, Stefl R. Linhartova K, et al. Nat Commun. 2024 Oct 24;15(1):9163. doi: 10.1038/s41467-024-53305-2. Nat Commun. 2024. PMID: 39448580 Free PMC article. - An integrative characterization of proline cis and trans conformers in a disordered peptide.
Pettitt AJ, Shukla VK, Figueiredo AM, Newton LS, McCarthy S, Tabor AB, Heller GT, Lorenz CD, Hansen DF. Pettitt AJ, et al. Biophys J. 2024 Nov 5;123(21):3798-3811. doi: 10.1016/j.bpj.2024.09.028. Epub 2024 Sep 27. Biophys J. 2024. PMID: 39340152 Free PMC article. - Deep learning of antibody epitopes using positional permutation vectors.
Vardaxis I, Simovski B, Anzar I, Stratford R, Clancy T. Vardaxis I, et al. Comput Struct Biotechnol J. 2024 Jun 15;23:2695-2707. doi: 10.1016/j.csbj.2024.06.005. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 39035832 Free PMC article. - AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest.
Yao L, Guan J, Xie P, Chung CR, Deng J, Huang Y, Chiang YC, Lee TY. Yao L, et al. Protein Sci. 2024 Jun;33(6):e5006. doi: 10.1002/pro.5006. Protein Sci. 2024. PMID: 38723168 - Tuning Molecular Motion Enhances Intrinsic Fluorescence in Peptide Amphiphile Nanofibers.
Sindhurattavej N, Jampana S, Pham MP, Romero LC, Rogers AG, Stevens GA, Fowler WC. Sindhurattavej N, et al. Biomacromolecules. 2024 Apr 8;25(4):2531-2541. doi: 10.1021/acs.biomac.4c00050. Epub 2024 Mar 20. Biomacromolecules. 2024. PMID: 38508219 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources