Contrast gain control in the cat visual cortex - PubMed (original) (raw)
. 1982 Jul 15;298(5871):266-8.
doi: 10.1038/298266a0.
- PMID: 7088176
- DOI: 10.1038/298266a0
Contrast gain control in the cat visual cortex
I Ohzawa et al. Nature. 1982.
Abstract
The eye functions effectively over an enormous range of ambient illumination, because retinal sensitivity can be adapted to prevailing light levels. Higher order neurones in the visual pathway are presumably more concerned with relative changes in illumination, that is, contrast, because a great deal of information concerning absolute light level is processed at the retinal level. It would therefore be of considerable functional value if cells in the visual cortex could adapt their response levels to a steady-state ambient contrast, in a manner analogous to the sensitivity control mechanism of the retina. We have examined here the idea that adaptation of neurones in the visual cortex to ambient contrast is similar to adaptation in the retina to ambient illumination. The experiments were performed by measuring contrast response functions (response amplitude as a function of contrast) of striate neurones, while systematically adapting them to different contrast levels. Our results show that, for the majority of cortical neurones, response-contrast curves are laterally shifted along a log-contrast axis so that the effective domains of neurones are adjusted to match prevailing contrast levels. This contrast gain control mechanism, which was not observed for lateral geniculate (LGN) fibres, must be of prime importance to visual function.
Similar articles
- Contrast gain control in the cat's visual system.
Ohzawa I, Sclar G, Freeman RD. Ohzawa I, et al. J Neurophysiol. 1985 Sep;54(3):651-67. doi: 10.1152/jn.1985.54.3.651. J Neurophysiol. 1985. PMID: 4045542 - Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision.
Cheng H, Chino YM, Smith EL 3rd, Hamamoto J, Yoshida K. Cheng H, et al. J Neurophysiol. 1995 Dec;74(6):2558-72. doi: 10.1152/jn.1995.74.6.2558. J Neurophysiol. 1995. PMID: 8747214 - Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.
Martin KA, Whitteridge D. Martin KA, et al. J Physiol. 1984 Aug;353:463-504. doi: 10.1113/jphysiol.1984.sp015347. J Physiol. 1984. PMID: 6481629 Free PMC article. - Anatomy and physiology of the afferent visual system.
Prasad S, Galetta SL. Prasad S, et al. Handb Clin Neurol. 2011;102:3-19. doi: 10.1016/B978-0-444-52903-9.00007-8. Handb Clin Neurol. 2011. PMID: 21601061 Review. - Spike timing and visual processing in the retinogeniculocortical pathway.
Usrey WM. Usrey WM. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1729-37. doi: 10.1098/rstb.2002.1157. Philos Trans R Soc Lond B Biol Sci. 2002. PMID: 12626007 Free PMC article. Review.
Cited by
- Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect.
Perini F, Cattaneo L, Carrasco M, Schwarzbach JV. Perini F, et al. J Neurosci. 2012 Sep 5;32(36):12361-5. doi: 10.1523/JNEUROSCI.5864-11.2012. J Neurosci. 2012. PMID: 22956826 Free PMC article. Clinical Trial. - Spatiotemporal Content of Saccade Transients.
Mostofi N, Zhao Z, Intoy J, Boi M, Victor JD, Rucci M. Mostofi N, et al. Curr Biol. 2020 Oct 19;30(20):3999-4008.e2. doi: 10.1016/j.cub.2020.07.085. Epub 2020 Sep 10. Curr Biol. 2020. PMID: 32916116 Free PMC article. - Dynamic causal modelling of precision and synaptic gain in visual perception - an EEG study.
Brown HR, Friston KJ. Brown HR, et al. Neuroimage. 2012 Oct 15;63(1):223-31. doi: 10.1016/j.neuroimage.2012.06.044. Epub 2012 Jun 29. Neuroimage. 2012. PMID: 22750569 Free PMC article. - Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex.
Dean AF, Tolhurst DJ. Dean AF, et al. Exp Brain Res. 1986;62(1):143-51. doi: 10.1007/BF00237410. Exp Brain Res. 1986. PMID: 3956629 - Balanced excitation and inhibition determine spike timing during frequency adaptation.
Higley MJ, Contreras D. Higley MJ, et al. J Neurosci. 2006 Jan 11;26(2):448-57. doi: 10.1523/JNEUROSCI.3506-05.2006. J Neurosci. 2006. PMID: 16407542 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous