Dendritic organization of the human spinal cord: the motoneurons - PubMed (original) (raw)
Dendritic organization of the human spinal cord: the motoneurons
J Schoenen. J Comp Neurol. 1982.
Abstract
The dendritic organization of motoneurons was analyzed with the Golgi stain and a morphometric method in the immature and adult human spinal cord. Each motoneuronal column was found to be characterized by a specific orientation of dendritic trees and by a distinct pattern of dendritic bundling. Ventromedial motoneurons have a pyramidal dendritic tree with numerous, short longitudinal branches and elongated dorsal branches. The latter form thick bundles oriented toward the ventral gray commissure. Longitudinal dendrites form a narrow-meshed dendritic plexus, containing abundant microbundles. Motoneurons of the ventromedial column have fewer primary dendrites and a lower ramification index than other motoneurons. Central motoneurons are predominantly oriented longitudinally. The meshes of the rostrocaudal dendritic plexus are looser and the microbundles are finer. Most transverse dendrites run laterally and participate in dendritic bundles which penetrate into the ventrolateral funiculus. The rostrocaudal dendritic domain of ventrolateral motoneurons is the largest dendritic domain of all spinal neurons. The longitudinal dendritic network contains fine microbundles and appears wide-meshed. Transverse dendrites form lateral or medial dendritic bundles depending upon the position of their perikaryon. Dorsolateral motoneurons differ from other motoneurons by their multipolar organization with a slight preponderance of dorsoventral dendritic spread. Rudimentary lateral dendrite bundles are restricted to marginal neurons. The longitudinal plexuses of motoneuronal dendrites and the verticotransverse dendrite bundles of the ventromedial column are well developed in the 26-28-week-old fetus. In contrast, the horizontotransverse dendrite bundles of central and ventrolateral motoneurons can only be recognized from 36 weeks on. The possible specific functions of the various types of dendrites bundles are examined and a laminar dendroarchitectonic schema of the human cord is proposed.
Similar articles
- Dendrite distribution of identified motoneurons in the lumbar spinal cord of the turtle Pseudemys scripta elegans.
Ruigrok TJ, Crowe A, ten Donkelaar HJ. Ruigrok TJ, et al. J Comp Neurol. 1985 Aug 15;238(3):275-85. doi: 10.1002/cne.902380304. J Comp Neurol. 1985. PMID: 4044916 - The dendritic organization of the human spinal cord: the dorsal horn.
Schoenen J. Schoenen J. Neuroscience. 1982;7(9):2057-87. doi: 10.1016/0306-4522(82)90120-8. Neuroscience. 1982. PMID: 7145088 - Dendritic distribution of motoneurons innervating the three heads of the trapezius muscle in the cat.
Vanner SJ, Rose PK. Vanner SJ, et al. J Comp Neurol. 1984 Jun 10;226(1):96-110. doi: 10.1002/cne.902260108. J Comp Neurol. 1984. PMID: 6736298 - Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing.
Broussard DL, Altschuler SM. Broussard DL, et al. Am J Med. 2000 Mar 6;108 Suppl 4a:79S-86S. doi: 10.1016/s0002-9343(99)00343-5. Am J Med. 2000. PMID: 10718457 Review. - Spatial distribution patterns of excitatory and inhibitory synapses in the dendritic tree differ between jaw-closing and -opening motoneurons.
Shigenaga Y, Bae YC, Moritani M, Yoshida A. Shigenaga Y, et al. Arch Oral Biol. 2007 Apr;52(4):321-4. doi: 10.1016/j.archoralbio.2006.11.003. Epub 2006 Dec 15. Arch Oral Biol. 2007. PMID: 17174264 Review.
Cited by
- Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development.
Lee FH, Su P, Xie YF, Wang KE, Wan Q, Liu F. Lee FH, et al. Sci Rep. 2016 Jul 27;6:30458. doi: 10.1038/srep30458. Sci Rep. 2016. PMID: 27461448 Free PMC article. - Distribution patterns of dendrites in motor neuron pools of lumbosacral spinal cord of the chicken.
Okado N, Homma S, Ishihara R, Kohno K. Okado N, et al. Anat Embryol (Berl). 1990;182(2):113-21. doi: 10.1007/BF00174012. Anat Embryol (Berl). 1990. PMID: 2244685 - Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.
Ferreira T, Ou Y, Li S, Giniger E, van Meyel DJ. Ferreira T, et al. Development. 2014 Feb;141(3):650-60. doi: 10.1242/dev.099655. Development. 2014. PMID: 24449841 Free PMC article. - Positional Strategies for Connection Specificity and Synaptic Organization in Spinal Sensory-Motor Circuits.
Balaskas N, Abbott LF, Jessell TM, Ng D. Balaskas N, et al. Neuron. 2019 Jun 19;102(6):1143-1156.e4. doi: 10.1016/j.neuron.2019.04.008. Epub 2019 May 7. Neuron. 2019. PMID: 31076274 Free PMC article. - Bror Rexed (1914-2002).
Sarikcioglu L, Ozsoy U. Sarikcioglu L, et al. J Neurol. 2008 Dec;255(12):1988-9. doi: 10.1007/s00415-008-0927-2. Epub 2008 Jul 7. J Neurol. 2008. PMID: 18592124 No abstract available.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources