Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA - PubMed (original) (raw)
Comparative Study
. 1995 Sep 25;23(18):3750-5.
doi: 10.1093/nar/23.18.3750.
Affiliations
- PMID: 7479006
- PMCID: PMC307275
- DOI: 10.1093/nar/23.18.3750
Free PMC article
Comparative Study
Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA
M Saparbaev et al. Nucleic Acids Res. 1995.
Free PMC article
Abstract
The human carcinogen vinyl chloride is metabolized in the liver to reactive intermediates which generate various ethenobases in DNA. It has been reported that 1,N6-ethenoadenine (epsilon A) is excised by a DNA glycosylase present in human cell extracts, whereas protein extracts from Escherichia coli and yeast were devoid of such an activity. We confirm that the human 3-methyladenine-DNA glycosylase (ANPG protein) excises epsilon A residues. This finding was extended to the rat (ADPG protein). We show, at variance with the previous report, that pure E.coli 3-methyladenine-DNA glycosylase II (AlkA protein) as well as its yeast counterpart, the MAG protein, excise epsilon A from double stranded oligodeoxynucleotides that contain a single epsilon A. Both enzymes act as DNA glycosylases. The full length and the truncated human (ANPG 70 and 40 proteins, respectively) and the rat (ADPG protein) 3-methyladenine-DNA glycosylases activities towards epsilon A are 2-3 orders of magnitude more efficient than the E.coli or yeast enzyme for the removal of epsilon A. The Km of the various proteins were measured. They are 24, 200 and 800 nM for the ANPG, MAG and AlkA proteins respectively. These three proteins efficiently cleave duplex oligonucleotides containing epsilon A positioned opposite T, G, C or epsilon A. However the MAG protein excises A opposite cytosine much faster than opposite thymine, guanine or adenine.
Similar articles
- Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases.
Saparbaev M, Laval J. Saparbaev M, et al. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5873-7. doi: 10.1073/pnas.91.13.5873. Proc Natl Acad Sci U S A. 1994. PMID: 8016081 Free PMC article. - Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues.
Saparbaev M, Mani JC, Laval J. Saparbaev M, et al. Nucleic Acids Res. 2000 Mar 15;28(6):1332-9. doi: 10.1093/nar/28.6.1332. Nucleic Acids Res. 2000. PMID: 10684927 Free PMC article. - 3,N4-ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase.
Saparbaev M, Laval J. Saparbaev M, et al. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8508-13. doi: 10.1073/pnas.95.15.8508. Proc Natl Acad Sci U S A. 1998. PMID: 9671708 Free PMC article. - Enzymology of repair of etheno-adducts.
Gros L, Ishchenko AA, Saparbaev M. Gros L, et al. Mutat Res. 2003 Oct 29;531(1-2):219-29. doi: 10.1016/j.mrfmmm.2003.07.008. Mutat Res. 2003. PMID: 14637257 Review. - Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
Hollis T, Lau A, Ellenberger T. Hollis T, et al. Mutat Res. 2000 Aug 30;460(3-4):201-10. doi: 10.1016/s0921-8777(00)00027-6. Mutat Res. 2000. PMID: 10946229 Review.
Cited by
- Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation.
Ayala-García VM, Valenzuela-García LI, Setlow P, Pedraza-Reyes M. Ayala-García VM, et al. J Bacteriol. 2016 Nov 18;198(24):3345-3354. doi: 10.1128/JB.00625-16. Print 2016 Dec 15. J Bacteriol. 2016. PMID: 27698084 Free PMC article. - DNA intrastrand cross-link at the 5'-GA-3' sequence formed by busulfan and its role in the cytotoxic effect.
Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S. Iwamoto T, et al. Cancer Sci. 2004 May;95(5):454-8. doi: 10.1111/j.1349-7006.2004.tb03231.x. Cancer Sci. 2004. PMID: 15132775 Free PMC article. - Structure of the E. coli DNA glycosylase AlkA bound to the ends of duplex DNA: a system for the structure determination of lesion-containing DNA.
Bowman BR, Lee S, Wang S, Verdine GL. Bowman BR, et al. Structure. 2008 Aug 6;16(8):1166-74. doi: 10.1016/j.str.2008.04.012. Structure. 2008. PMID: 18682218 Free PMC article. - Base excision repair and cancer.
Wallace SS, Murphy DL, Sweasy JB. Wallace SS, et al. Cancer Lett. 2012 Dec 31;327(1-2):73-89. doi: 10.1016/j.canlet.2011.12.038. Epub 2012 Jan 15. Cancer Lett. 2012. PMID: 22252118 Free PMC article. Review. - Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases.
Eichman BF, O'Rourke EJ, Radicella JP, Ellenberger T. Eichman BF, et al. EMBO J. 2003 Oct 1;22(19):4898-909. doi: 10.1093/emboj/cdg505. EMBO J. 2003. PMID: 14517230 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1981 Feb;78(2):852-5 - PubMed
- Drug Metab Rev. 1994;26(1-2):349-71 - PubMed
- Nature. 1982 Apr 22;296(5859):770-3 - PubMed
- Carcinogenesis. 1983 Aug;4(8):997-1000 - PubMed
- Biochem Biophys Res Commun. 1984 Apr 16;120(1):1-8 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials