Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA - PubMed (original) (raw)
Comparative Study
. 1995 Sep 25;23(18):3750-5.
doi: 10.1093/nar/23.18.3750.
Affiliations
- PMID: 7479006
- PMCID: PMC307275
- DOI: 10.1093/nar/23.18.3750
Free PMC article
Comparative Study
Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA
M Saparbaev et al. Nucleic Acids Res. 1995.
Free PMC article
Abstract
The human carcinogen vinyl chloride is metabolized in the liver to reactive intermediates which generate various ethenobases in DNA. It has been reported that 1,N6-ethenoadenine (epsilon A) is excised by a DNA glycosylase present in human cell extracts, whereas protein extracts from Escherichia coli and yeast were devoid of such an activity. We confirm that the human 3-methyladenine-DNA glycosylase (ANPG protein) excises epsilon A residues. This finding was extended to the rat (ADPG protein). We show, at variance with the previous report, that pure E.coli 3-methyladenine-DNA glycosylase II (AlkA protein) as well as its yeast counterpart, the MAG protein, excise epsilon A from double stranded oligodeoxynucleotides that contain a single epsilon A. Both enzymes act as DNA glycosylases. The full length and the truncated human (ANPG 70 and 40 proteins, respectively) and the rat (ADPG protein) 3-methyladenine-DNA glycosylases activities towards epsilon A are 2-3 orders of magnitude more efficient than the E.coli or yeast enzyme for the removal of epsilon A. The Km of the various proteins were measured. They are 24, 200 and 800 nM for the ANPG, MAG and AlkA proteins respectively. These three proteins efficiently cleave duplex oligonucleotides containing epsilon A positioned opposite T, G, C or epsilon A. However the MAG protein excises A opposite cytosine much faster than opposite thymine, guanine or adenine.
Similar articles
- Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases.
Saparbaev M, Laval J. Saparbaev M, et al. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5873-7. doi: 10.1073/pnas.91.13.5873. Proc Natl Acad Sci U S A. 1994. PMID: 8016081 Free PMC article. - Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues.
Saparbaev M, Mani JC, Laval J. Saparbaev M, et al. Nucleic Acids Res. 2000 Mar 15;28(6):1332-9. doi: 10.1093/nar/28.6.1332. Nucleic Acids Res. 2000. PMID: 10684927 Free PMC article. - 3,N4-ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase.
Saparbaev M, Laval J. Saparbaev M, et al. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8508-13. doi: 10.1073/pnas.95.15.8508. Proc Natl Acad Sci U S A. 1998. PMID: 9671708 Free PMC article. - Enzymology of repair of etheno-adducts.
Gros L, Ishchenko AA, Saparbaev M. Gros L, et al. Mutat Res. 2003 Oct 29;531(1-2):219-29. doi: 10.1016/j.mrfmmm.2003.07.008. Mutat Res. 2003. PMID: 14637257 Review. - Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
Hollis T, Lau A, Ellenberger T. Hollis T, et al. Mutat Res. 2000 Aug 30;460(3-4):201-10. doi: 10.1016/s0921-8777(00)00027-6. Mutat Res. 2000. PMID: 10946229 Review.
Cited by
- Small intestinal development in suckling rats after enteral obestatin administration.
Słupecka-Ziemilska M, Grzesiak P, Jank M, Majewska A, Rak A, Kowalczyk P, Kato I, Kuwahara A, Woliński J. Słupecka-Ziemilska M, et al. PLoS One. 2018 Oct 19;13(10):e0205994. doi: 10.1371/journal.pone.0205994. eCollection 2018. PLoS One. 2018. PMID: 30339696 Free PMC article. - The response of Escherichia coli to the alkylating agents chloroacetaldehyde and styrene oxide.
Muenter MM, Aiken A, Akanji JO, Baig S, Bellou S, Carlson A, Conway C, Cowell CM, DeLateur NA, Hester A, Joshi C, Kramer C, Leifer BS, Nash E, Qi MH, Travers M, Wong KC, Hu M, Gou N, Giese RW, Gu AZ, Beuning PJ. Muenter MM, et al. Mutat Res Genet Toxicol Environ Mutagen. 2019 Apr;840:1-10. doi: 10.1016/j.mrgentox.2019.02.001. Epub 2019 Feb 7. Mutat Res Genet Toxicol Environ Mutagen. 2019. PMID: 30857727 Free PMC article. - Transient kinetic analysis of oxidative dealkylation by the direct reversal DNA repair enzyme AlkB.
Baldwin MR, Admiraal SJ, O'Brien PJ. Baldwin MR, et al. J Biol Chem. 2020 May 22;295(21):7317-7326. doi: 10.1074/jbc.RA120.013517. Epub 2020 Apr 13. J Biol Chem. 2020. PMID: 32284330 Free PMC article. - The current state of eukaryotic DNA base damage and repair.
Bauer NC, Corbett AH, Doetsch PW. Bauer NC, et al. Nucleic Acids Res. 2015 Dec 2;43(21):10083-101. doi: 10.1093/nar/gkv1136. Epub 2015 Oct 30. Nucleic Acids Res. 2015. PMID: 26519467 Free PMC article. Review. - Finding optimal interaction interface alignments between biological complexes.
Cui X, Naveed H, Gao X. Cui X, et al. Bioinformatics. 2015 Jun 15;31(12):i133-41. doi: 10.1093/bioinformatics/btv242. Bioinformatics. 2015. PMID: 26072475 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1981 Feb;78(2):852-5 - PubMed
- Drug Metab Rev. 1994;26(1-2):349-71 - PubMed
- Nature. 1982 Apr 22;296(5859):770-3 - PubMed
- Carcinogenesis. 1983 Aug;4(8):997-1000 - PubMed
- Biochem Biophys Res Commun. 1984 Apr 16;120(1):1-8 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials