Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport - PubMed (original) (raw)
Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport
T Nakata et al. J Cell Biol. 1995 Nov.
Abstract
In the study of motor proteins, the molecular mechanism of mechanochemical coupling, as well as the cellular role of these proteins, is an important issue. To assess these questions we introduced cDNA of wild-type and site-directed mutant kinesin heavy chains into fibroblasts, and analyzed the behavior of the recombinant proteins and the mechanisms involved in organelle transports. Overexpression of wild-type kinesin significantly promoted elongation of cellular processes. Wild-type kinesin accumulated at the tips of the long processes, whereas the kinesin mutants, which contained either a T93N- or T93I mutation in the ATP-binding motif, tightly bound to microtubules in the center of the cells. These mutant kinesins could bind to microtubules in vitro, but could not dissociate from them even in the presence of ATP, and did not support microtubule motility in vitro, thereby indicating rigor-type mutations. Retrograde transport from the Golgi apparatus to the endoplasmic reticulum, as well as lysosome dispersion, was shown to be a microtubule-dependent, plus-end-directed movement. The latter was selectively blocked in the rigor-mutant cells, although the microtubule minus-end-directed motion of lysosomes was not affected. We found the point mutations that make kinesin motor in strong binding state with microtubules in vitro and showed that this mutant causes a dominant effect that selectively blocks anterograde lysosome membrane transports in vivo.
Similar articles
- A fission yeast kinesin affects Golgi membrane recycling.
Brazer SC, Williams HP, Chappell TG, Cande WZ. Brazer SC, et al. Yeast. 2000 Jan 30;16(2):149-66. doi: 10.1002/(SICI)1097-0061(20000130)16:2<149::AID-YEA514>3.0.CO;2-C. Yeast. 2000. PMID: 10641037 - KIF2beta, a new kinesin superfamily protein in non-neuronal cells, is associated with lysosomes and may be implicated in their centrifugal translocation.
Santama N, Krijnse-Locker J, Griffiths G, Noda Y, Hirokawa N, Dotti CG. Santama N, et al. EMBO J. 1998 Oct 15;17(20):5855-67. doi: 10.1093/emboj/17.20.5855. EMBO J. 1998. PMID: 9774330 Free PMC article. - Cultured cell extracts support organelle movement on microtubules in vitro.
Dabora SL, Sheetz MP. Dabora SL, et al. Cell Motil Cytoskeleton. 1988;10(4):482-95. doi: 10.1002/cm.970100405. Cell Motil Cytoskeleton. 1988. PMID: 3145153 - Kinesin motors as molecular machines.
Endow SA. Endow SA. Bioessays. 2003 Dec;25(12):1212-9. doi: 10.1002/bies.10358. Bioessays. 2003. PMID: 14635256 Review. - ER contact sites direct late endosome transport.
Wijdeven RH, Jongsma ML, Neefjes J, Berlin I. Wijdeven RH, et al. Bioessays. 2015 Dec;37(12):1298-302. doi: 10.1002/bies.201500095. Epub 2015 Oct 6. Bioessays. 2015. PMID: 26440125 Review.
Cited by
- An orphan kinesin in trypanosomes cooperates with a kinetoplastid-specific kinesin to maintain cell morphology by regulating subpellicular microtubules.
Hu H, Hu L, Yu Z, Chasse AE, Chu F, Li Z. Hu H, et al. J Cell Sci. 2012 Sep 1;125(Pt 17):4126-36. doi: 10.1242/jcs.106534. Epub 2012 May 23. J Cell Sci. 2012. PMID: 22623724 Free PMC article. - Mechanisms and functions of lysosome positioning.
Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Pu J, et al. J Cell Sci. 2016 Dec 1;129(23):4329-4339. doi: 10.1242/jcs.196287. Epub 2016 Oct 31. J Cell Sci. 2016. PMID: 27799357 Free PMC article. Review. - The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans.
Konzack S, Rischitor PE, Enke C, Fischer R. Konzack S, et al. Mol Biol Cell. 2005 Feb;16(2):497-506. doi: 10.1091/mbc.e04-02-0083. Epub 2004 Nov 24. Mol Biol Cell. 2005. PMID: 15563609 Free PMC article. - Self-organized optical device driven by motor proteins.
Aoyama S, Shimoike M, Hiratsuka Y. Aoyama S, et al. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16408-13. doi: 10.1073/pnas.1306281110. Epub 2013 Sep 24. Proc Natl Acad Sci U S A. 2013. PMID: 24065817 Free PMC article. - CRMP/UNC-33 organizes microtubule bundles for KIF5-mediated mitochondrial distribution to axon.
Chen YC, Huang HR, Hsu CH, Ou CY. Chen YC, et al. PLoS Genet. 2021 Feb 11;17(2):e1009360. doi: 10.1371/journal.pgen.1009360. eCollection 2021 Feb. PLoS Genet. 2021. PMID: 33571181 Free PMC article.
References
- Genetics. 1991 Oct;129(2):409-22 - PubMed
- Biophys J. 1993 Dec;65(6):2504-10 - PubMed
- Nature. 1990 Aug 30;346(6287):864-6 - PubMed
- J Cell Biol. 1981 Jun;89(3):547-59 - PubMed
- J Cell Biol. 1985 Jul;101(1):85-95 - PubMed