The peptide-binding motif for the human transporter associated with antigen processing - PubMed (original) (raw)
The peptide-binding motif for the human transporter associated with antigen processing
P M van Endert et al. J Exp Med. 1995.
Abstract
Presentation of antigenic peptides by human leukocyte antigen class I molecules is dependent on peptide transport into the endoplasmic reticulum by the transporters associated with antigen processing (TAP) (Germain, R. N. 1994. Cell. 76:287-299). This translocation step is currently regarded as permissive for all peptides with COOH-terminal residues capable of binding to HLA class I molecules (Momburg, F., J. Roelse, J. C. Howard, G. W. Butcher, G.J. Hämmerling, and J.J. Neefjes. 1994. Nature (Lond.). 367:648-651). In this report, we show that the human transporter selects peptides according to a binding motif based on the strong effects on peptide affinity of the three NH2-terminal positions and the COOH-terminal residues. TAP favors strongly hydrophobic residues in position 3 (P3) and hydrophobic or charged residues in P2, whereas aromatic or acidic residues in P1, as well as Pro in P1 and P2, have strong deleterious effects. Selection of naturally presented peptides by the transporter is suggested by their higher average affinity for TAP, as compared to nonselected peptides. The TAP preferences in the three NH2-terminal positions correspond to those of the vast majority of human leukocyte antigen class I alleles, but they represent an obstacle for peptide supply to some alleles, e.g., the B7-like group. We propose that peptides binding to these alleles, and in general, peptides with TAP affinities below a certain threshold, may be transported as extended precursors.
Similar articles
- Tapasin enhances assembly of transporters associated with antigen processing-dependent and -independent peptides with HLA-A2 and HLA-B27 expressed in insect cells.
Lauvau G, Gubler B, Cohen H, Daniel S, Caillat-Zucman S, van Endert PM. Lauvau G, et al. J Biol Chem. 1999 Oct 29;274(44):31349-58. doi: 10.1074/jbc.274.44.31349. J Biol Chem. 1999. PMID: 10531335 - Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator.
Schumacher TN, Kantesaria DV, Heemels MT, Ashton-Rickardt PG, Shepherd JC, Fruh K, Yang Y, Peterson PA, Tonegawa S, Ploegh HL. Schumacher TN, et al. J Exp Med. 1994 Feb 1;179(2):533-40. doi: 10.1084/jem.179.2.533. J Exp Med. 1994. PMID: 8294864 Free PMC article. - Peptide selection by MHC-encoded TAP transporters.
Momburg F, Neefjes JJ, Hämmerling GJ. Momburg F, et al. Curr Opin Immunol. 1994 Feb;6(1):32-7. doi: 10.1016/0952-7915(94)90030-2. Curr Opin Immunol. 1994. PMID: 8172678 Review. - TAP-independent delivery of antigenic peptides to the endoplasmic reticulum: therapeutic potential and insights into TAP-dependent antigen processing.
Yewdell JW, Snyder HL, Bacik I, Antón LC, Deng Y, Behrens TW, Bachi T, Bennink JR. Yewdell JW, et al. J Immunother. 1998 Mar;21(2):127-31. doi: 10.1097/00002371-199803000-00006. J Immunother. 1998. PMID: 9551364 Review.
Cited by
- Study of antigen-processing steps reveals preferences explaining differential biological outcomes of two HLA-A2-restricted immunodominant epitopes from human immunodeficiency virus type 1.
Cohen WM, Bianco A, Connan F, Camoin L, Dalod M, Lauvau G, Ferriès E, Culmann-Penciolelli B, van Endert PM, Briand JP, Choppin J, Guillet JG. Cohen WM, et al. J Virol. 2002 Oct;76(20):10219-25. doi: 10.1128/jvi.76.20.10219-10225.2002. J Virol. 2002. PMID: 12239297 Free PMC article. - ABC proteins in antigen translocation and viral inhibition.
Parcej D, Tampé R. Parcej D, et al. Nat Chem Biol. 2010 Aug;6(8):572-80. doi: 10.1038/nchembio.410. Nat Chem Biol. 2010. PMID: 20644544 Review. - Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation.
Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, Zhou X. Huang M, et al. Sci Rep. 2016 Sep 16;6:33612. doi: 10.1038/srep33612. Sci Rep. 2016. PMID: 27634283 Free PMC article. - The cytoplasmic peptidase DPP9 is rate-limiting for degradation of proline-containing peptides.
Geiss-Friedlander R, Parmentier N, Möller U, Urlaub H, Van den Eynde BJ, Melchior F. Geiss-Friedlander R, et al. J Biol Chem. 2009 Oct 2;284(40):27211-9. doi: 10.1074/jbc.M109.041871. Epub 2009 Aug 10. J Biol Chem. 2009. PMID: 19667070 Free PMC article. - Interactions formed by individually expressed TAP1 and TAP2 polypeptide subunits.
Antoniou AN, Ford S, Pilley ES, Blake N, Powis SJ. Antoniou AN, et al. Immunology. 2002 Jun;106(2):182-9. doi: 10.1046/j.1365-2567.2002.01415.x. Immunology. 2002. PMID: 12047747 Free PMC article.
References
- Nature. 1992 Nov 26;360(6402):364-6 - PubMed
- Cell. 1993 Aug 13;74(3):577-84 - PubMed
- Immunity. 1994 Apr;1(1):7-14 - PubMed
- Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1534-8 - PubMed
- Immunity. 1994 Sep;1(6):491-500 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous