Quantitative and selective fluorophore labeling of phosphoserine on peptides and proteins: characterization at the attomole level by capillary electrophoresis and laser-induced fluorescence - PubMed (original) (raw)
. 1995 Feb 10;225(1):81-8.
doi: 10.1006/abio.1995.1111.
Affiliations
- PMID: 7539987
- DOI: 10.1006/abio.1995.1111
Quantitative and selective fluorophore labeling of phosphoserine on peptides and proteins: characterization at the attomole level by capillary electrophoresis and laser-induced fluorescence
P Fadden et al. Anal Biochem. 1995.
Abstract
Reaction conditions were defined for the selective quantitative derivatization and fluorophore labeling of phosphoserine residues on peptides and proteins. Phosphoserine was derivatized with 1,2-ethanedithiol using a modification of the reaction conditions defined by R. C. Clark and J. Dijkstra (1967) Int. J. Biochem. 11, 577-585 and H. E. Meyer, E. Hoffman-Posorke, H. Korte, and M. G. Heilmeyer (1986) FEBS Lett. 204, 61-66 for stabilizing the phosphoamino acid during Edman degradation reactions. Following derivatization, the thiol-serine residues were coupled to fluorescence by iodoacetate reaction. Characterization by capillary zone electrophoresis and laser-induced fluorescence allowed quantitation of phosphoserine content of peptides and proteins at < 75 amol. In three separate experiments, the overall reaction efficiency for 1,2-ethanedithiol derivatization of phosphoserine was estimated at 89.27 +/- 2.44% (SDM). Subsequent coupling of the derivatized serine residue with 6-iodoacetamidofluoroscein was estimated at > 98% efficiency. Fluorescent probe tagging of phosphoamino acids on proteins and peptides offers direct quantitative evaluation of cellular phosphorylation states at the attomole level in tissue samples derived from plants, animals, and humans, without the use of radioisotopes, antibodies, or mass spectrometry.
Similar articles
- Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry.
Adamczyk M, Gebler JC, Wu J. Adamczyk M, et al. Rapid Commun Mass Spectrom. 2001;15(16):1481-8. doi: 10.1002/rcm.394. Rapid Commun Mass Spectrom. 2001. PMID: 11507762 - Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides.
McLachlin DT, Chait BT. McLachlin DT, et al. Anal Chem. 2003 Dec 15;75(24):6826-36. doi: 10.1021/ac034989u. Anal Chem. 2003. PMID: 14670042 - Liquid chromatographic analysis of phosphoamino acids at femtomole level using chemical derivatization with N-hydroxysuccinimidyl fluorescein-O-acetate.
Deng YH, Li RJ, Zhang HS, Du XL, Wang H. Deng YH, et al. Anal Chim Acta. 2007 Oct 3;601(1):118-24. doi: 10.1016/j.aca.2007.08.023. Epub 2007 Aug 22. Anal Chim Acta. 2007. PMID: 17904477 - Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis.
Sachon E, Mohammed S, Bache N, Jensen ON. Sachon E, et al. Rapid Commun Mass Spectrom. 2006;20(7):1127-34. doi: 10.1002/rcm.2427. Rapid Commun Mass Spectrom. 2006. PMID: 16521170 - Labeling reactions applicable to chromatography and electrophoresis of minute amounts of proteins.
Krull IS, Strong R, Sosic Z, Cho BY, Beale SC, Wang CC, Cohen S. Krull IS, et al. J Chromatogr B Biomed Sci Appl. 1997 Oct 10;699(1-2):173-208. doi: 10.1016/s0378-4347(97)00157-6. J Chromatogr B Biomed Sci Appl. 1997. PMID: 9392375 Review.
Cited by
- Spectrofluorimetric determination of human serum albumin using terbium-danofloxacin probe.
Ramezani AM, Manzoori JL, Amjadi M, Jouyban A. Ramezani AM, et al. ScientificWorldJournal. 2012;2012:940541. doi: 10.1100/2012/940541. Epub 2012 May 2. ScientificWorldJournal. 2012. PMID: 22645474 Free PMC article. - Molecular biologist's guide to proteomics.
Graves PR, Haystead TA. Graves PR, et al. Microbiol Mol Biol Rev. 2002 Mar;66(1):39-63; table of contents. doi: 10.1128/MMBR.66.1.39-63.2002. Microbiol Mol Biol Rev. 2002. PMID: 11875127 Free PMC article. Review. - Multiplexed Analysis of Peptide Functionality Using Lanthanide-based Structural Shift Reagents.
Kerr TJ, Gant-Branum RL, McLean JA. Kerr TJ, et al. Int J Mass Spectrom. 2011 Oct 1;301(1-3):28-32. doi: 10.1016/j.ijms.2011.03.003. Int J Mass Spectrom. 2011. PMID: 21966243 Free PMC article. - Mapping sites of protein phosphorylation by mass spectrometry utilizing a chemical-enzymatic approach: characterization of products from alpha-S1 casein phosphopeptides.
McCormick DJ, Holmes MW, Muddiman DC, Madden BJ. McCormick DJ, et al. J Proteome Res. 2005 Mar-Apr;4(2):424-34. doi: 10.1021/pr049804u. J Proteome Res. 2005. PMID: 15822919 Free PMC article. - Covalent Chemical Tools for Profiling Post-Translational Modifications.
Emenike B, Nwajiobi O, Raj M. Emenike B, et al. Front Chem. 2022 Jul 4;10:868773. doi: 10.3389/fchem.2022.868773. eCollection 2022. Front Chem. 2022. PMID: 35860626 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources