CFTR as a cAMP-dependent regulator of sodium channels - PubMed (original) (raw)
. 1995 Aug 11;269(5225):847-50.
doi: 10.1126/science.7543698.
Affiliations
- PMID: 7543698
- DOI: 10.1126/science.7543698
CFTR as a cAMP-dependent regulator of sodium channels
M J Stutts et al. Science. 1995.
Abstract
Cystic fibrosis transmembrane regulator (CFTR), the gene product that is mutated in cystic fibrosis (CF) patients, has a well-recognized function as a cyclic adenosine 3',5'-monophosphate (cAMP)-regulated chloride channel, but this property does not account for the abnormally high basal rate and cAMP sensitivity of sodium ion absorption in CF airway epithelia. Expression of complementary DNAs for rat epithelial Na+ channel (rENaC) alone in Madin Darby canine kidney (MDCK) epithelial cells generated large amiloride-sensitive sodium currents that were stimulated by cAMP, whereas coexpression of human CFTR with rENaC generated smaller basal sodium currents that were inhibited by cAMP. Parallel studies that measured regulation of sodium permeability in fibroblasts showed similar results. In CF airway epithelia, the absence of this second function of CFTR as a cAMP-dependent regulator likely accounts for abnormal sodium transport.
Comment in
- Regulation of ion channels by ABC transporters that secrete ATP.
al-Awqati Q. al-Awqati Q. Science. 1995 Aug 11;269(5225):805-6. doi: 10.1126/science.7543697. Science. 1995. PMID: 7543697 Review. No abstract available.
Similar articles
- Na+ and Cl- conductances in airway epithelial cells: increased Na+ conductance in cystic fibrosis.
Kunzelmann K, Kathöfer S, Greger R. Kunzelmann K, et al. Pflugers Arch. 1995 Nov;431(1):1-9. doi: 10.1007/BF00374371. Pflugers Arch. 1995. PMID: 8584404 - [CFTR as cAMP-dependent chloride channels and as cAMP-dependent regulator of sodium channels].
Tohyama M. Tohyama M. Nihon Rinsho. 1996 Feb;54(2):429-33. Nihon Rinsho. 1996. PMID: 8838092 Review. Japanese. - Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype.
Beck S, Kühr J, Schütz VV, Seydewitz HH, Brandis M, Greger R, Kunzelmann K. Beck S, et al. Pediatr Pulmonol. 1999 Apr;27(4):251-9. doi: 10.1002/(sici)1099-0496(199904)27:4<251::aid-ppul5>3.0.co;2-b. Pediatr Pulmonol. 1999. PMID: 10230924 - Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents.
Schwiebert EM, Flotte T, Cutting GR, Guggino WB. Schwiebert EM, et al. Am J Physiol. 1994 May;266(5 Pt 1):C1464-77. doi: 10.1152/ajpcell.1994.266.5.C1464. Am J Physiol. 1994. PMID: 7515570 - Liquid movement across the surface epithelium of large airways.
Chambers LA, Rollins BM, Tarran R. Chambers LA, et al. Respir Physiol Neurobiol. 2007 Dec 15;159(3):256-70. doi: 10.1016/j.resp.2007.06.005. Epub 2007 Jun 17. Respir Physiol Neurobiol. 2007. PMID: 17692578 Free PMC article. Review.
Cited by
- Low-dose high-resolution chest CT in adults with cystic fibrosis: intraindividual comparison between photon-counting and energy-integrating detector CT.
Frings M, Welsner M, Mousa C, Zensen S, Salhöfer L, Meetschen M, Beck N, Bos D, Westhölter D, Wienker J, Taube C, Umutlu L, Schaarschmidt BM, Forsting M, Haubold J, Sutharsan S, Opitz M. Frings M, et al. Eur Radiol Exp. 2024 Sep 19;8(1):105. doi: 10.1186/s41747-024-00502-9. Eur Radiol Exp. 2024. PMID: 39298080 Free PMC article. - Cystic Fibrosis: A Journey through Time and Hope.
Trouvé P, Saint Pierre A, Férec C. Trouvé P, et al. Int J Mol Sci. 2024 Sep 4;25(17):9599. doi: 10.3390/ijms25179599. Int J Mol Sci. 2024. PMID: 39273547 Free PMC article. Review. - Cystic fibrosis.
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Mall MA, et al. Nat Rev Dis Primers. 2024 Aug 8;10(1):53. doi: 10.1038/s41572-024-00538-6. Nat Rev Dis Primers. 2024. PMID: 39117676 Review. - Epithelial Na + Channels Function as Extracellular Sensors.
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Kashlan OB, et al. Compr Physiol. 2024 Mar 29;14(2):1-41. doi: 10.1002/cphy.c230015. Compr Physiol. 2024. PMID: 39109974 Review. - Multi-omics profiling of mouse polycystic kidney disease progression at a single cell resolution.
Muto Y, Yoshimura Y, Wu H, Chang-Panesso M, Ledru N, Woodward OM, Outeda P, Cheng T, Mahjoub MR, Watnick TJ, Humphreys BD. Muto Y, et al. bioRxiv [Preprint]. 2024 May 31:2024.05.27.595830. doi: 10.1101/2024.05.27.595830. bioRxiv. 2024. PMID: 38854144 Free PMC article. Updated. Preprint.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical