Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices - PubMed (original) (raw)

Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices

C Cavada et al. J Chem Neuroanat. 1995 May.

Abstract

The patterns of histochemical staining for acetylcholinesterase (AChE) activity in the macaque thalamus were analyzed and compared with the distribution of cells and terminals labeled from injections of axonal tracers in the dorsolateral and orbital prefrontal cortex, in area 7a of the posterior parietal cortex and in the polysensory cortex of the superior temporal sulcus. AChE histochemistry is very useful in delineating the thalamic nuclei connected with the association cortex and in uncovering thalamic subdivisions that are barely evident on cytoarchitectonic grounds. Moreover, AChE activity reveals previously unrecognized heterogeneities within several thalamic nuclei, like the ventral anterior (VA), where a new ventromedial subdivision (VAvm) is described, the medial pulvinar (PulM) or the mediodorsal nucleus (MD). In this nucleus three distinct chemical domains are present: the medial, ventral and lateral sectors characterized by low, moderate and high AChE activities, respectively. The staining pattern of the lateral sector is markedly heterogeneous with patches of intense AChE activity surrounded by a moderately stained matrix. The MD medial sector is connected with the orbitofrontal cortex, whereas the AChE-rich patches in the lateral sector are selectively connected with the dorsolateral prefrontal, parietal and temporal association cortices. In the PulM, a dorsomedial AChE-rich patch is selectively connected with the orbitofrontal cortex, whereas the surrounding territory, which shows moderate AChE activity, is preferentially connected with the parietal and temporal cortices. Chemically specific domains in the anterior, ventral anterior, midline, and intralaminar thalamic nuclei are also connected with the examined association cortices. These findings indicate that the topographic patterns of the thalamo-cortical connections of primate association areas conform to the chemical architecture of the thalamus. This implies that because each cortical area is connected to a particular set of thalamic regions, the influence of the thalamus on cortical function is exclusive for each area, highly diverse among the various association areas, and subject to a wide range of modulation at the thalamic level.

PubMed Disclaimer

Publication types

MeSH terms

Substances