Using Dirichlet mixture priors to derive hidden Markov models for protein families - PubMed (original) (raw)
Affiliations
- PMID: 7584370
Using Dirichlet mixture priors to derive hidden Markov models for protein families
M Brown et al. Proc Int Conf Intell Syst Mol Biol. 1993.
Abstract
A Bayesian method for estimating the amino acid distributions in the states of a hidden Markov model (HMM) for a protein family or the columns of a multiple alignment of that family is introduced. This method uses Dirichlet mixture densities as priors over amino acid distributions. These mixture densities are determined from examination of previously constructed HMMs or multiple alignments. It is shown that this Bayesian method can improve the quality of HMMs produced from small training sets. Specific experiments on the EF-hand motif are reported, for which these priors are shown to produce HMMs with higher likelihood on unseen data, and fewer false positives and false negatives in a database search task.
Similar articles
- Hidden Markov models in computational biology. Applications to protein modeling.
Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Krogh A, et al. J Mol Biol. 1994 Feb 4;235(5):1501-31. doi: 10.1006/jmbi.1994.1104. J Mol Biol. 1994. PMID: 8107089 - Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology.
Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haussler D. Sjölander K, et al. Comput Appl Biosci. 1996 Aug;12(4):327-45. doi: 10.1093/bioinformatics/12.4.327. Comput Appl Biosci. 1996. PMID: 8902360 - Bayesian restoration of a hidden Markov chain with applications to DNA sequencing.
Churchill GA, Lazareva B. Churchill GA, et al. J Comput Biol. 1999 Summer;6(2):261-77. doi: 10.1089/cmb.1999.6.261. J Comput Biol. 1999. PMID: 10421527 - Hidden Markov model and its applications in motif findings.
Wu J, Xie J. Wu J, et al. Methods Mol Biol. 2010;620:405-16. doi: 10.1007/978-1-60761-580-4_13. Methods Mol Biol. 2010. PMID: 20652513 Review. - Profile hidden Markov models.
Eddy SR. Eddy SR. Bioinformatics. 1998;14(9):755-63. doi: 10.1093/bioinformatics/14.9.755. Bioinformatics. 1998. PMID: 9918945 Review.
Cited by
- learnMSA: learning and aligning large protein families.
Becker F, Stanke M. Becker F, et al. Gigascience. 2022 Nov 18;11:giac104. doi: 10.1093/gigascience/giac104. Gigascience. 2022. PMID: 36399060 Free PMC article. - Bridging the gaps in statistical models of protein alignment.
Sumanaweera D, Allison L, Konagurthu AS. Sumanaweera D, et al. Bioinformatics. 2022 Jun 24;38(Suppl 1):i229-i237. doi: 10.1093/bioinformatics/btac246. Bioinformatics. 2022. PMID: 35758809 Free PMC article. - Predicting biological pathways of chemical compounds with a profile-inspired approach.
Lopez-Ibañez J, Pazos F, Chagoyen M. Lopez-Ibañez J, et al. BMC Bioinformatics. 2021 Jun 12;22(1):320. doi: 10.1186/s12859-021-04252-y. BMC Bioinformatics. 2021. PMID: 34118870 Free PMC article. - Machine Boss: rapid prototyping of bioinformatic automata.
Silvestre-Ryan J, Wang Y, Sharma M, Lin S, Shen Y, Dider S, Holmes I. Silvestre-Ryan J, et al. Bioinformatics. 2021 Apr 9;37(1):29-35. doi: 10.1093/bioinformatics/btaa633. Bioinformatics. 2021. PMID: 32683444 Free PMC article. - Embracing Ambiguity in the Taxonomic Classification of Microbiome Sequencing Data.
Shah N, Meisel JS, Pop M. Shah N, et al. Front Genet. 2019 Oct 17;10:1022. doi: 10.3389/fgene.2019.01022. eCollection 2019. Front Genet. 2019. PMID: 31681437 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources