Pattern recognition computation using action potential timing for stimulus representation - PubMed (original) (raw)
. 1995 Jul 6;376(6535):33-6.
doi: 10.1038/376033a0.
Affiliations
- PMID: 7596429
- DOI: 10.1038/376033a0
Pattern recognition computation using action potential timing for stimulus representation
J J Hopfield. Nature. 1995.
Abstract
A computational model is described in which the sizes of variables are represented by the explicit times at which action potentials occur, rather than by the more usual 'firing rate' of neurons. The comparison of patterns over sets of analogue variables is done by a network using different delays for different information paths. This mode of computation explains how one scheme of neuroarchitecture can be used for very different sensory modalities and seemingly different computations. The oscillations and anatomy of the mammalian olfactory systems have a simple interpretation in terms of this representation, and relate to processing in the auditory system. Single-electrode recording would not detect such neural computing. Recognition 'units' in this style respond more like radial basis function units than elementary sigmoid units.
Comment in
- Pattern recognition. Time for a new neural code?
Sejnowski TJ. Sejnowski TJ. Nature. 1995 Jul 6;376(6535):21-2. doi: 10.1038/376021a0. Nature. 1995. PMID: 7596425 No abstract available.
Similar articles
- Information content of auditory cortical responses to time-varying acoustic stimuli.
Lu T, Wang X. Lu T, et al. J Neurophysiol. 2004 Jan;91(1):301-13. doi: 10.1152/jn.00022.2003. Epub 2003 Oct 1. J Neurophysiol. 2004. PMID: 14523081 - Sustained firing in auditory cortex evoked by preferred stimuli.
Wang X, Lu T, Snider RK, Liang L. Wang X, et al. Nature. 2005 May 19;435(7040):341-6. doi: 10.1038/nature03565. Nature. 2005. PMID: 15902257 - Pattern recognition. Time for a new neural code?
Sejnowski TJ. Sejnowski TJ. Nature. 1995 Jul 6;376(6535):21-2. doi: 10.1038/376021a0. Nature. 1995. PMID: 7596425 No abstract available. - Primary auditory cortex of cats: feature detection or something else?
Nelken I, Fishbach A, Las L, Ulanovsky N, Farkas D. Nelken I, et al. Biol Cybern. 2003 Nov;89(5):397-406. doi: 10.1007/s00422-003-0445-3. Epub 2003 Nov 7. Biol Cybern. 2003. PMID: 14669020 Review. - First-spike latency of auditory neurons revisited.
Heil P. Heil P. Curr Opin Neurobiol. 2004 Aug;14(4):461-7. doi: 10.1016/j.conb.2004.07.002. Curr Opin Neurobiol. 2004. PMID: 15321067 Review.
Cited by
- Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding.
Gansel KS. Gansel KS. Front Integr Neurosci. 2022 Oct 3;16:900715. doi: 10.3389/fnint.2022.900715. eCollection 2022. Front Integr Neurosci. 2022. PMID: 36262373 Free PMC article. - Training multi-layer spiking neural networks with plastic synaptic weights and delays.
Wang J. Wang J. Front Neurosci. 2024 Jan 24;17:1253830. doi: 10.3389/fnins.2023.1253830. eCollection 2023. Front Neurosci. 2024. PMID: 38328553 Free PMC article. - The primacy model and the structure of olfactory space.
Giaffar H, Shuvaev S, Rinberg D, Koulakov AA. Giaffar H, et al. PLoS Comput Biol. 2024 Sep 10;20(9):e1012379. doi: 10.1371/journal.pcbi.1012379. eCollection 2024 Sep. PLoS Comput Biol. 2024. PMID: 39255274 Free PMC article. - A generative spike train model with time-structured higher order correlations.
Trousdale J, Hu Y, Shea-Brown E, Josić K. Trousdale J, et al. Front Comput Neurosci. 2013 Jul 17;7:84. doi: 10.3389/fncom.2013.00084. eCollection 2013. Front Comput Neurosci. 2013. PMID: 23908626 Free PMC article. - In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb.
Cang J, Isaacson JS. Cang J, et al. J Neurosci. 2003 May 15;23(10):4108-16. doi: 10.1523/JNEUROSCI.23-10-04108.2003. J Neurosci. 2003. PMID: 12764098 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources