Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface - PubMed (original) (raw)
Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface
V R Simon et al. J Cell Biol. 1995 Jul.
Abstract
Using fluorescent membrane potential sensing dyes to stain budding yeast, mitochondria are resolved as tubular organelles aligned in radial arrays that converge at the bud neck. Time-lapse fluorescence microscopy reveals region-specific, directed mitochondrial movement during polarized yeast cell growth and mitotic cell division. Mitochondria in the central region of the mother cell move linearly towards the bud, traverse the bud neck, and progress towards the bud tip at an average velocity of 49 +/- 21 nm/sec. In contrast, mitochondria in the peripheral region of the mother cell and at the bud tip display significantly less movement. Yeast strains containing temperature sensitive lethal mutations in the actin gene show abnormal mitochondrial distribution. No mitochondrial movement is evident in these mutants after short-term shift to semi-permissive temperatures. Thus, the actin cytoskeleton is important for normal mitochondrial movement during inheritance. To determine the possible role of known myosin genes in yeast mitochondrial motility, we investigated mitochondrial inheritance in myo1, myo2, myo3 and myo4 single mutants and in a myo2, myo4 double mutant. Mitochondrial spatial arrangement and motility are not significantly affected by these mutations. We used a microfilament sliding assay to examine motor activity on isolated yeast mitochondria. Rhodamine-phalloidin labeled yeast actin filaments bind to immobilized yeast mitochondria, as well as unilamellar, right-side-out, sealed mitochondrial outer membrane vesicles. In the presence of low levels of ATP (0.1-100 microM), we observed F-actin sliding on immobilized yeast mitochondria. In the presence of high levels of ATP (500 microM-2 mM), bound filaments are released from mitochondria and mitochondrial outer membranes. The maximum velocity of mitochondria-driven microfilament sliding (23 +/- 11 nm/sec) is similar to that of mitochondrial movement in living cells. This motor activity requires hydrolysis of ATP, does not require cytosolic extracts, is sensitive to protease treatment, and displays an ATP concentration dependence similar to that of members of the myosin family of actin-based motors. This is the first demonstration of an actin-based motor activity in a defined organelle population.
Similar articles
- Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae.
Simon VR, Karmon SL, Pon LA. Simon VR, et al. Cell Motil Cytoskeleton. 1997;37(3):199-210. doi: 10.1002/(SICI)1097-0169(1997)37:3<199::AID-CM2>3.0.CO;2-2. Cell Motil Cytoskeleton. 1997. PMID: 9227850 - A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division.
Boldogh IR, Ramcharan SL, Yang HC, Pon LA. Boldogh IR, et al. Mol Biol Cell. 2004 Sep;15(9):3994-4002. doi: 10.1091/mbc.e04-01-0053. Epub 2004 Jun 23. Mol Biol Cell. 2004. PMID: 15215313 Free PMC article. - The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae.
Altmann K, Frank M, Neumann D, Jakobs S, Westermann B. Altmann K, et al. J Cell Biol. 2008 Apr 7;181(1):119-30. doi: 10.1083/jcb.200709099. J Cell Biol. 2008. PMID: 18391073 Free PMC article. - Vesicle transport: the role of actin filaments and myosin motors.
DePina AS, Langford GM. DePina AS, et al. Microsc Res Tech. 1999 Oct 15;47(2):93-106. doi: 10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P. Microsc Res Tech. 1999. PMID: 10523788 Review. - Mitochondrial manoeuvres: latest insights and hypotheses on mitochondrial partitioning during mitosis in Saccharomyces cerevisiae.
Peraza-Reyes L, Crider DG, Pon LA. Peraza-Reyes L, et al. Bioessays. 2010 Dec;32(12):1040-9. doi: 10.1002/bies.201000083. Epub 2010 Sep 30. Bioessays. 2010. PMID: 20886527 Review.
Cited by
- Actin Polymerization Defects Induce Mitochondrial Dysfunction in Cellular Models of Nemaline Myopathies.
Piñero-Pérez R, López-Cabrera A, Álvarez-Córdoba M, Cilleros-Holgado P, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de Pablos RM, Sánchez-Alcázar JA. Piñero-Pérez R, et al. Antioxidants (Basel). 2023 Nov 21;12(12):2023. doi: 10.3390/antiox12122023. Antioxidants (Basel). 2023. PMID: 38136143 Free PMC article. - Hyphal Growth in Trichosporon asahii Is Accelerated by the Addition of Magnesium.
Aoki K, Yamamoto K, Ohkuma M, Sugita T, Tanaka N, Takashima M. Aoki K, et al. Microbiol Spectr. 2023 Jun 15;11(3):e0424222. doi: 10.1128/spectrum.04242-22. Epub 2023 Apr 27. Microbiol Spectr. 2023. PMID: 37102973 Free PMC article. - Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission.
Green A, Hossain T, Eckmann DM. Green A, et al. Front Cell Dev Biol. 2022 Oct 19;10:1010232. doi: 10.3389/fcell.2022.1010232. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36340034 Free PMC article. Review. - Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells.
Jones MD, Naylor K. Jones MD, et al. Int J Mol Sci. 2022 Aug 20;23(16):9402. doi: 10.3390/ijms23169402. Int J Mol Sci. 2022. PMID: 36012665 Free PMC article. Review. - Actin cables and comet tails organize mitochondrial networks in mitosis.
Moore AS, Coscia SM, Simpson CL, Ortega FE, Wait EC, Heddleston JM, Nirschl JJ, Obara CJ, Guedes-Dias P, Boecker CA, Chew TL, Theriot JA, Lippincott-Schwartz J, Holzbaur ELF. Moore AS, et al. Nature. 2021 Mar;591(7851):659-664. doi: 10.1038/s41586-021-03309-5. Epub 2021 Mar 3. Nature. 2021. PMID: 33658713 Free PMC article.
References
- Eur J Cell Biol. 1988 Oct;47(1):22-31 - PubMed
- J Cell Biol. 1995 Mar;128(6):1055-68 - PubMed
- Methods Enzymol. 1991;194:3-21 - PubMed
- EMBO J. 1993 Jul;12(7):2855-62 - PubMed
- Cell Motil Cytoskeleton. 1991;20(2):109-20 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases