Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1 - PubMed (original) (raw)
. 1995 Aug 31;376(6543):745-53.
doi: 10.1038/376745a0.
Affiliations
- PMID: 7651533
- DOI: 10.1038/376745a0
Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1
J Goldberg et al. Nature. 1995.
Abstract
The crystal structure of mammalian protein phosphatase-1, complexed with the toxin microcystin and determined at 2.1 A resolution, reveals that it is a metalloenzyme unrelated in architecture to the tyrosine phosphatases. Two metal ions are positioned by a central beta-alpha-beta-alpha-beta scaffold at the active site, from which emanate three surface grooves that are potential binding sites for substrates and inhibitors. The carboxy terminus is positioned at the end of one of the grooves such that regulatory sequences following the domain might modulate function. The fold of the catalytic domain is expected to be closely preserved in protein phosphatases 2A and 2B (calcineurin).
Similar articles
- Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor.
Endo S, Zhou X, Connor J, Wang B, Shenolikar S. Endo S, et al. Biochemistry. 1996 Apr 23;35(16):5220-8. doi: 10.1021/bi952940f. Biochemistry. 1996. PMID: 8611507 - Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2.
Eck MJ, Pluskey S, Trüb T, Harrison SC, Shoelson SE. Eck MJ, et al. Nature. 1996 Jan 18;379(6562):277-80. doi: 10.1038/379277a0. Nature. 1996. PMID: 8538796 - Conversion of protein phosphatase 1 catalytic subunit to a Mn(2+)-dependent enzyme impairs its regulation by inhibitor 1.
Endo S, Connor JH, Forney B, Zhang L, Ingebritsen TS, Lee EY, Shenolikar S. Endo S, et al. Biochemistry. 1997 Jun 10;36(23):6986-92. doi: 10.1021/bi970418i. Biochemistry. 1997. PMID: 9188695 - Insights derived from the structures of the Ser/Thr phosphatases calcineurin and protein phosphatase 1.
Lohse DL, Denu JM, Dixon JE. Lohse DL, et al. Structure. 1995 Oct 15;3(10):987-90. doi: 10.1016/s0969-2126(01)00234-9. Structure. 1995. PMID: 8590008 Review. - Protein serine/threonine phosphatases.
Villafranca JE, Kissinger CR, Parge HE. Villafranca JE, et al. Curr Opin Biotechnol. 1996 Aug;7(4):397-402. doi: 10.1016/s0958-1669(96)80114-5. Curr Opin Biotechnol. 1996. PMID: 8768897 Review.
Cited by
- Structure of the essential Haemophilus influenzae UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis.
Cho J, Lee CJ, Zhao J, Young HE, Zhou P. Cho J, et al. Nat Microbiol. 2016 Aug 15;1(11):16154. doi: 10.1038/nmicrobiol.2016.154. Nat Microbiol. 2016. PMID: 27780190 Free PMC article. - Rapid isolation of a single-chain antibody against the cyanobacterial toxin microcystin-LR by phage display and its use in the immunoaffinity concentration of microcystins from water.
McElhiney J, Drever M, Lawton LA, Porter AJ. McElhiney J, et al. Appl Environ Microbiol. 2002 Nov;68(11):5288-95. doi: 10.1128/AEM.68.11.5288-5295.2002. Appl Environ Microbiol. 2002. PMID: 12406716 Free PMC article. - The Snf1 protein kinase and Sit4 protein phosphatase have opposing functions in regulating TATA-binding protein association with the Saccharomyces cerevisiae INO1 promoter.
Shirra MK, Rogers SE, Alexander DE, Arndt KM. Shirra MK, et al. Genetics. 2005 Apr;169(4):1957-72. doi: 10.1534/genetics.104.038075. Epub 2005 Feb 16. Genetics. 2005. PMID: 15716495 Free PMC article. - Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7.
Logan MR, Nguyen T, Szapiel N, Knockleby J, Por H, Zadworny M, Neszt M, Harrison P, Bussey H, Mandato CA, Vogel J, Lesage G. Logan MR, et al. BMC Genomics. 2008 Jul 15;9:336. doi: 10.1186/1471-2164-9-336. BMC Genomics. 2008. PMID: 18627629 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous