Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae - PubMed (original) (raw)
Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae
Y Murakami et al. Nat Genet. 1995 Jul.
Abstract
The complete nucleotide sequence of Saccharomyces cerevisiae chromosome VI (270 kb) has revealed that it contains 129 predicted or known genes (300 bp or longer). Thirty-seven (28%) of which have been identified previously. Among the 92 novel genes, 39 are highly homologous to previously identified genes. Local sequence motifs were compared to active ARS regions and inactive loci with perfect ARS core sequences to examine the relationship between these motifs and ARS activity. Additional ARS sequences were predominantly observed in 3' flanking sequences of active ARS loci.
Similar articles
- Analysis of DNA sequences homologous with the ARS core consensus in Saccharomyces cerevisiae.
Bouton AH, Stirling VB, Smith MM. Bouton AH, et al. Yeast. 1987 Jun;3(2):107-15. doi: 10.1002/yea.320030207. Yeast. 1987. PMID: 3332964 - The complete sequence of a 6146 bp fragment of Saccharomyces cerevisiae chromosome III contains two new open reading frames.
Wilson C, Grisanti P, Frontali L. Wilson C, et al. Yeast. 1992 Jul;8(7):569-75. doi: 10.1002/yea.320080708. Yeast. 1992. PMID: 1523889 - Sequencing of an 18.8 kb fragment from Saccharomyces cerevisiae chromosome VI.
Naitou M, Ozawa M, Sasanuma S, Kobayashi M, Hagiwara H, Shibata T, Hanaoka F, Watanabe K, Ono A, Yamazaki M, et al. Naitou M, et al. Yeast. 1995 Dec;11(15):1525-32. doi: 10.1002/yea.320111508. Yeast. 1995. PMID: 8750241 - The 2 micron circle plasmid of Saccharomyces cerevisiae.
Futcher AB. Futcher AB. Yeast. 1988 Mar;4(1):27-40. doi: 10.1002/yea.320040104. Yeast. 1988. PMID: 3059711 Review. No abstract available. - Yeast telomeres: the end of the chromosome story?
Walmsley RM. Walmsley RM. Yeast. 1987 Sep;3(3):139-48. doi: 10.1002/yea.320030302. Yeast. 1987. PMID: 3332970 Review. No abstract available.
Cited by
- Precise estimates of mutation rate and spectrum in yeast.
Zhu YO, Siegal ML, Hall DW, Petrov DA. Zhu YO, et al. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2310-8. doi: 10.1073/pnas.1323011111. Epub 2014 May 20. Proc Natl Acad Sci U S A. 2014. PMID: 24847077 Free PMC article. - Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response.
Kawahara T, Yanagi H, Yura T, Mori K. Kawahara T, et al. Mol Biol Cell. 1997 Oct;8(10):1845-62. doi: 10.1091/mbc.8.10.1845. Mol Biol Cell. 1997. PMID: 9348528 Free PMC article. - Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes.
Klein S, Zenvirth D, Dror V, Barton AB, Kaback DB, Simchen G. Klein S, et al. Chromosoma. 1996 Dec;105(5):276-84. doi: 10.1007/BF02524645. Chromosoma. 1996. PMID: 8939820 - From Petri Plates to Petri Nets, a revolution in yeast biology.
Oliver SG. Oliver SG. FEMS Yeast Res. 2022 Feb 22;22(1):foac008. doi: 10.1093/femsyr/foac008. FEMS Yeast Res. 2022. PMID: 35142857 Free PMC article. No abstract available. - Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase.
Reinders A, Bürckert N, Boller T, Wiemken A, De Virgilio C. Reinders A, et al. Genes Dev. 1998 Sep 15;12(18):2943-55. doi: 10.1101/gad.12.18.2943. Genes Dev. 1998. PMID: 9744870 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases