pp125FAK tyrosine kinase activity is not required for the assembly of F-actin stress fibres and focal adhesions in cultured mouse aortic smooth muscle cells - PubMed (original) (raw)

. 1995 Jun:108 ( Pt 6):2381-91.

doi: 10.1242/jcs.108.6.2381.

Affiliations

pp125FAK tyrosine kinase activity is not required for the assembly of F-actin stress fibres and focal adhesions in cultured mouse aortic smooth muscle cells

L Wilson et al. J Cell Sci. 1995 Jun.

Abstract

The observed increase in phosphotyrosine content of focal adhesion-associated proteins, in response to integrin engagement, indicates a role for integrin-regulatable tyrosine kinase(s) in cytoskeletal re-organisation. The tyrosine kinase pp125FAK, by virtue of its focal adhesion localisation in fibroblasts, represents a prime candidate to perform this function. We have investigated whether pp125FAK performs a similar function in mouse aortic smooth muscle cells (MASMC). MASMC cultured for 16 hours exhibit F-actin stress fibres and focal adhesions. We have shown that vinculin, pp125FAK and tyrosine-phosphorylated proteins are localised in focal adhesions during this time period. MASMC, under these culture conditions exhibit elevated pp125FAK tyrosine kinase activity, as measured by an increased autophosphorylation potential. We investigated the development of F-actin stress fibres and focal adhesions in MASMC in response to adherence to fibronectin, conditions shown to promote cytoskeletal reorganisation in fibroblasts. Within 30 minutes, MASMC exhibited well-developed F-actin stress fibres and prominent focal adhesions which immunostained intensely for vinculin, pp125FAK and phosphotyrosine. Adherence to fibronectin has been reported to activate pp125FAK tyrosine kinase in fibroblasts, leading to the proposal that pp125FAK plays a critical role in focal adhesion formation. Therefore pp125FAK activation, in response to adherence to fibronectin, was investigated in MASMC. Anti-phosphotyrosine immunoblotting and in vitro kinase assays of MASMC lysates have revealed that, under conditions which promote focal adhesion formation, pp125FAK remains inactive. Since overnight cultures of MASMC exhibited elevated pp125FAK tyrosine kinase activity, we investigated whether these cells deposit their own combination of extracellular matrix (ECM) molecules and/or secrete factors into their conditioned medium which are capable of activating pp125FAK tyrosine kinase. Our results indicate that MASMC-elaborated ECM, but not their conditioned medium, supported pp125FAK tyrosine kinase activation. Furthermore, MASMC exposed to MASMC-ECM displayed a poorly defined F-actin stress fibre network and rudimentary focal adhesions. Thus we have demonstrated the existence of two adhesion-mediated situations in MASMC; one in which fibronectin promotes cytoskeletal reorganisation in the absence of pp125FAK tyrosine kinase activity and the other in which cells adhering to MASMC-ECM display elevated pp125FAK tyrosine kinase activity in association with an impaired ability to promote F-actin stress fibre and focal adhesion formation. These results indicate that in MASMC, pp125FAK tyrosine kinase activity is not involved in F-actin stress fibre assembly and focal adhesion formation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources