An osmosensing signal transduction pathway in yeast - PubMed (original) (raw)
. 1993 Mar 19;259(5102):1760-3.
doi: 10.1126/science.7681220.
Affiliations
- PMID: 7681220
- DOI: 10.1126/science.7681220
An osmosensing signal transduction pathway in yeast
J L Brewster et al. Science. 1993.
Abstract
Yeast genes were isolated that are required for restoring the osmotic gradient across the cell membrane in response to increased external osmolarity. Two of these genes, HOG1 and PBS2, encode members of the mitogen-activated protein kinase (MAP kinase) and MAP kinase kinase gene families, respectively. MAP kinases are activated by extracellular ligands such as growth factors and function as intermediate kinases in protein phosphorylation cascades. A rapid, PBS2-dependent tyrosine phosphorylation of HOG1 protein occurred in response to increases in extracellular osmolarity. These data define a signal transduction pathway that is activated by changes in the osmolarity of the extracellular environment.
Similar articles
- Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases.
Wurgler-Murphy SM, Maeda T, Witten EA, Saito H. Wurgler-Murphy SM, et al. Mol Cell Biol. 1997 Mar;17(3):1289-97. doi: 10.1128/MCB.17.3.1289. Mol Cell Biol. 1997. PMID: 9032256 Free PMC article. - The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.
Schüller C, Brewster JL, Alexander MR, Gustin MC, Ruis H. Schüller C, et al. EMBO J. 1994 Sep 15;13(18):4382-9. doi: 10.1002/j.1460-2075.1994.tb06758.x. EMBO J. 1994. PMID: 7523111 Free PMC article. - Regulation of the osmoregulatory HOG MAPK cascade in yeast.
Saito H, Tatebayashi K. Saito H, et al. J Biochem. 2004 Sep;136(3):267-72. doi: 10.1093/jb/mvh135. J Biochem. 2004. PMID: 15598881 Review. - Response of Saccharomyces cerevisiae to changes in external osmolarity.
Varela JCS, Mager WH. Varela JCS, et al. Microbiology (Reading). 1996 Apr;142 ( Pt 4):721-731. doi: 10.1099/00221287-142-4-721. Microbiology (Reading). 1996. PMID: 8936301 Review. No abstract available.
Cited by
- Strain-dependent differences in coordination of yeast signalling networks.
Scott TD, Xu P, McClean MN. Scott TD, et al. FEBS J. 2023 Apr;290(8):2097-2114. doi: 10.1111/febs.16689. Epub 2022 Dec 4. FEBS J. 2023. PMID: 36416575 Free PMC article. - The yeast Hot1 transcription factor is critical for activating a single target gene, STL1.
Bai C, Tesker M, Engelberg D. Bai C, et al. Mol Biol Cell. 2015 Jun 15;26(12):2357-74. doi: 10.1091/mbc.E14-12-1626. Epub 2015 Apr 22. Mol Biol Cell. 2015. PMID: 25904326 Free PMC article. - The regulation of filamentous growth in yeast.
Cullen PJ, Sprague GF Jr. Cullen PJ, et al. Genetics. 2012 Jan;190(1):23-49. doi: 10.1534/genetics.111.127456. Genetics. 2012. PMID: 22219507 Free PMC article. Review. - Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae.
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Chasse SA, et al. Eukaryot Cell. 2006 Feb;5(2):330-46. doi: 10.1128/EC.5.2.330-346.2006. Eukaryot Cell. 2006. PMID: 16467474 Free PMC article. - Mechanisms regulating the protein kinases of Saccharomyces cerevisiae.
Rubenstein EM, Schmidt MC. Rubenstein EM, et al. Eukaryot Cell. 2007 Apr;6(4):571-83. doi: 10.1128/EC.00026-07. Epub 2007 Mar 2. Eukaryot Cell. 2007. PMID: 17337635 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases