Gene inactivation in Lactococcus lactis: histidine biosynthesis - PubMed (original) (raw)
Comparative Study
Gene inactivation in Lactococcus lactis: histidine biosynthesis
C Delorme et al. J Bacteriol. 1993 Jul.
Abstract
Lactococcus lactis strains from dairy and nondairy sources were tested for the ability to grow in the absence of histidine. Among 60 dairy strains tested, 56 required histidine, whereas only 1 of 11 nondairy strains had this requirement. Moreover, 10 of the 56 auxotrophic strains were able to grow in the presence of histidinol (Hol+), the immediate histidine precursor. This indicates that adaptation to milk often results in histidine auxotrophy. The histidine operon was detected by Southern hybridization in eight dairy auxotrophic strains tested. A large part of the histidine operon (8 kb, containing seven histidine biosynthetic genes and three unrelated open reading frames [ORFs]) was cloned from an auxotroph, which had an inactive hisD gene, as judged by its inability to grow on histidinol. Complementation analysis of three genes, hisA, hisB, and hisG, in Escherichia coli showed that they also were inactive. Sequence analysis of the cloned histidine region, which revealed 98.6% overall homology with that of the previously analyzed prototrophic strain, showed the presence of frameshift mutations in three his genes, hisC, hisG, and hisH, and two genes unrelated to histidine biosynthesis, ORF3 and ORF6. In addition, several mutations were detected in the promoter region of the operon. Northern (RNA) hybridization analysis showed a much lower amount of the his transcript in the auxotrophic strain than in the prototrophic strain. The mutations detected account for the histidine auxotrophy of the analyzed strain. Certain other dairy auxotrophic strains carry a lower number of mutations, since they were able to revert either to a Hol+ phenotype or to histidine prototrophy.
Similar articles
- Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.
Delorme C, Ehrlich SD, Renault P. Delorme C, et al. J Bacteriol. 1992 Oct;174(20):6571-9. doi: 10.1128/jb.174.20.6571-6579.1992. J Bacteriol. 1992. PMID: 1400209 Free PMC article. - Histidinol phosphate phosphatase, catalyzing the penultimate step of the histidine biosynthesis pathway, is encoded by ytvP (hisJ) in Bacillus subtilis.
le Coq D, Fillinger S, Aymerich S. le Coq D, et al. J Bacteriol. 1999 May;181(10):3277-80. doi: 10.1128/JB.181.10.3277-3280.1999. J Bacteriol. 1999. PMID: 10322033 Free PMC article. - Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis.
Godon JJ, Delorme C, Bardowski J, Chopin MC, Ehrlich SD, Renault P. Godon JJ, et al. J Bacteriol. 1993 Jul;175(14):4383-90. doi: 10.1128/jb.175.14.4383-4390.1993. J Bacteriol. 1993. PMID: 8331070 Free PMC article. - Histidine biosynthetic pathway and genes: structure, regulation, and evolution.
Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. Alifano P, et al. Microbiol Rev. 1996 Mar;60(1):44-69. doi: 10.1128/mr.60.1.44-69.1996. Microbiol Rev. 1996. PMID: 8852895 Free PMC article. Review. No abstract available. - Regulation of the first step of the histidine biosynthesis in Escherichia coli.
Dall-Larsen T. Dall-Larsen T. Int J Biochem. 1988;20(3):231-5. doi: 10.1016/0020-711x(88)90346-1. Int J Biochem. 1988. PMID: 3281865 Review. No abstract available.
Cited by
- Global diversity of enterococci and description of 18 previously unknown species.
Schwartzman JA, Lebreton F, Salamzade R, Shea T, Martin MJ, Schaufler K, Urhan A, Abeel T, Camargo ILBC, Sgardioli BF, Prichula J, Guedes Frazzon AP, Giribet G, Van Tyne D, Treinish G, Innis CJ, Wagenaar JA, Whipple RM, Manson AL, Earl AM, Gilmore MS. Schwartzman JA, et al. Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2310852121. doi: 10.1073/pnas.2310852121. Epub 2024 Feb 28. Proc Natl Acad Sci U S A. 2024. PMID: 38416678 Free PMC article. - Microbial interactions shape cheese flavour formation.
Melkonian C, Zorrilla F, Kjærbølling I, Blasche S, Machado D, Junge M, Sørensen KI, Andersen LT, Patil KR, Zeidan AA. Melkonian C, et al. Nat Commun. 2023 Dec 21;14(1):8348. doi: 10.1038/s41467-023-41059-2. Nat Commun. 2023. PMID: 38129392 Free PMC article. - Recombination-mediated remodelling of host-pathogen interactions during Staphylococcus aureus niche adaptation.
Spoor LE, Richardson E, Richards AC, Wilson GJ, Mendonca C, Gupta RK, McAdam PR, Nutbeam-Tuffs S, Black NS, O'Gara JP, Lee CY, Corander J, Ross Fitzgerald J. Spoor LE, et al. Microb Genom. 2015 Oct 30;1(4):e000036. doi: 10.1099/mgen.0.000036. eCollection 2015 Oct. Microb Genom. 2015. PMID: 28348819 Free PMC article. - Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis.
Noens EE, Lolkema JS. Noens EE, et al. J Bacteriol. 2015 Mar;197(5):951-8. doi: 10.1128/JB.02471-14. Epub 2014 Dec 22. J Bacteriol. 2015. PMID: 25535271 Free PMC article. - Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation.
Oxaran V, Ledue-Clier F, Dieye Y, Herry JM, Péchoux C, Meylheuc T, Briandet R, Juillard V, Piard JC. Oxaran V, et al. PLoS One. 2012;7(12):e50989. doi: 10.1371/journal.pone.0050989. Epub 2012 Dec 6. PLoS One. 2012. PMID: 23236417 Free PMC article.
References
- J Bacteriol. 1993 Jul;175(14):4383-90 - PubMed
- Proc Natl Acad Sci U S A. 1968 May;60(1):160-7 - PubMed
- J Mol Evol. 1991 Jul;33(1):23-33 - PubMed
- Genetics. 1990 Mar;124(3):455-71 - PubMed
- J Bacteriol. 1991 May;173(9):2768-75 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases