The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons - PubMed (original) (raw)

The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons

A Cholewinski et al. Neuroscience. 1993 Aug.

Abstract

The effects of capsaicin cytosolic Ca2+ concentration ([Ca2+]i) were measured in individual dorsal root ganglion neurons of the rat in culture. Capsaicin produced a rapid concentration-dependent (EC50 value of 72 nM) increase in [Ca2+]i which was entirely dependent on Ca2+ entry. Exposure of the neurons to a high concentration of capsaicin resulted in desensitization, but only in the presence of external Ca2+. Raising [Ca2+]i with a depolarizing concentration of potassium or the Ca2+ ionophore ionomycin did not reduce the response to a subsequent application of capsaicin. Capsaicin did not induce desensitization in Ca(2+)-free medium even if [Ca2+]i was simultaneously raised with a combination of ionomycin plus carbonyl cyanide m-chlorophenyl-hydrazone. Okadaic acid, a known inhibitor of protein phosphatases 1 and 2A, caused a transient dose-dependent (EC50 value, 100nM) rise in [Ca2+]i, but had no effect on either the responsiveness to capsaicin or capsaicin induced desensitization. The capsaicin antagonist capsazepine blocked the increase in [Ca2+]i evoked by capsaicin and prevented desensitization. These results suggest that desensitization requires the presence of extracellular Ca2+, cannot be mimicked by raising the concentration of [Ca2+]i and may involve Ca2+ entry through activated capsaicin-operated ion channels.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources