Early functional neural networks in the developing retina - PubMed (original) (raw)
. 1995 Apr 20;374(6524):716-8.
doi: 10.1038/374716a0.
Affiliations
- PMID: 7715725
- DOI: 10.1038/374716a0
Early functional neural networks in the developing retina
R O Wong et al. Nature. 1995.
Abstract
In the adult mammalian retina, the principal direction of information flow is along a vertical pathway from photoreceptors to retinal interneurons to ganglion cells, the output neurons of the retina. We report here, however, that initially in development, at a time when the photoreceptors are not yet even present, there are already functionally defined networks within the retina. These networks are spontaneously active rather than visually driven, and they involve horizontal rather than vertical pathways. By means of optical recording using the calcium-sensitive dye Fura-2, we have found that sets of retinal ganglion cells and amacrine cells, a type of retinal interneuron, undergo synchronized oscillations in intracellular calcium concentration. These oscillations are highly correlated among subgroups of neighbouring cells, and spread in a wave-like fashion tangentially across the retina. Thus, in development of retinal circuitry, the initial patterning of neuronal function occurs in the horizontal domain before the adult pattern of vertical information transfer emerges.
Similar articles
- Emergence of realistic retinal networks in culture promoted by the superior colliculus.
Colicos MA, Firth SI, Bosze J, Goldstein J, Feller MB. Colicos MA, et al. Dev Neurosci. 2004;26(5-6):406-16. doi: 10.1159/000082283. Dev Neurosci. 2004. PMID: 15855770 - Dissociated retinal neurons form periodically active synaptic circuits.
Harris RE, Coulombe MG, Feller MB. Harris RE, et al. J Neurophysiol. 2002 Jul;88(1):188-95. doi: 10.1152/jn.00722.2001. J Neurophysiol. 2002. PMID: 12091544 - Neuroglycan C, a neural tissue-specific transmembrane chondroitin sulfate proteoglycan, in retinal neural network formation.
Inatani M, Tanihara H, Oohira A, Otori Y, Nishida A, Honjo M, Kido N, Honda Y. Inatani M, et al. Invest Ophthalmol Vis Sci. 2000 Dec;41(13):4338-46. Invest Ophthalmol Vis Sci. 2000. PMID: 11095636 - Gap junctions in the vertebrate retina.
Cook JE, Becker DL. Cook JE, et al. Microsc Res Tech. 1995 Aug 1;31(5):408-19. doi: 10.1002/jemt.1070310510. Microsc Res Tech. 1995. PMID: 8534902 Review. - Characterization of receptors for glutamate and GABA in retinal neurons.
Yang XL. Yang XL. Prog Neurobiol. 2004 Jun;73(2):127-50. doi: 10.1016/j.pneurobio.2004.04.002. Prog Neurobiol. 2004. PMID: 15201037 Review.
Cited by
- Neurovascular responses to neuronal activity during sensory development.
Konecny L, Quadir R, Ninan A, Rodríguez-Contreras A. Konecny L, et al. Front Cell Neurosci. 2022 Nov 11;16:1025429. doi: 10.3389/fncel.2022.1025429. eCollection 2022. Front Cell Neurosci. 2022. PMID: 36439201 Free PMC article. - Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
Voigt T, Opitz T, de Lima AD. Voigt T, et al. J Neurosci. 2001 Nov 15;21(22):8895-905. doi: 10.1523/JNEUROSCI.21-22-08895.2001. J Neurosci. 2001. PMID: 11698601 Free PMC article. - GAP junctions: multifaceted regulators of neuronal differentiation.
Talukdar S, Emdad L, Das SK, Fisher PB. Talukdar S, et al. Tissue Barriers. 2022 Jan 2;10(1):1982349. doi: 10.1080/21688370.2021.1982349. Epub 2021 Oct 15. Tissue Barriers. 2022. PMID: 34651545 Free PMC article. - Construction and disruption of spatial memory networks during development.
Baram TZ, Donato F, Holmes GL. Baram TZ, et al. Learn Mem. 2019 Jun 17;26(7):206-218. doi: 10.1101/lm.049239.118. Print 2019 Jul. Learn Mem. 2019. PMID: 31209115 Free PMC article. Review. - Influences on the global structure of cortical maps.
Goodhill GJ, Bates KR, Montague PR. Goodhill GJ, et al. Proc Biol Sci. 1997 May 22;264(1382):649-55. doi: 10.1098/rspb.1997.0092. Proc Biol Sci. 1997. PMID: 9178536 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources