Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines - PubMed (original) (raw)
Comparative Study
. 1994 Nov;120(11):3197-204.
doi: 10.1242/dev.120.11.3197.
Affiliations
- PMID: 7720562
- DOI: 10.1242/dev.120.11.3197
Comparative Study
Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines
P A Labosky et al. Development. 1994 Nov.
Abstract
Primordial germ cells of the mouse cultured on feeder layers with leukemia inhibitory factor, Steel factor and basic fibroblast growth factor give rise to cells that resemble undifferentiated blastocyst-derived embryonic stem cells. These primordial germ cell-derived embryonic germ cells can be induced to differentiate extensively in culture, form teratocarcinomas when injected into nude mice and contribute to chimeras when injected into host blastocysts. Here, we report the derivation of multiple embryonic germ cell lines from 8.5 days post coitum embryos of C57BL/6 inbred mice. Four independent embryonic germ cell lines with normal male karyotypes have formed chimeras when injected into BALB/c host blastocysts and two of these lines have transmitted coat color markers through the germline. We also show that pluripotent cell lines capable of forming teratocarcinomas and coat color chimeras can be established from primordial germ cells of 8.0 days p.c. embryos and 12.5 days p.c. genital ridges. We have examined the methylation status of the putative imprinting box of the insulin-like growth factor type 2 receptor gene (Igf2r) in these embryonic germ cell lines. No correlation was found between methylation pattern and germline competence. A significant difference was observed between embryonic stem cell and embryonic germ cell lines in their ability to maintain the methylation imprint of the Igf2r gene in culture. This may illustrate a fundamental difference between these two cell types.
Similar articles
- Embryonic germ cell lines and their derivation from mouse primordial germ cells.
Labosky PA, Barlow DP, Hogan BL. Labosky PA, et al. Ciba Found Symp. 1994;182:157-68; discussion 168-78. doi: 10.1002/9780470514573.ch9. Ciba Found Symp. 1994. PMID: 7835148 Review. - Derivation and characterization of pluripotent embryonic germ cells in chicken.
Park TS, Han JY. Park TS, et al. Mol Reprod Dev. 2000 Aug;56(4):475-82. doi: 10.1002/1098-2795(200008)56:4<475::AID-MRD5>3.0.CO;2-M. Mol Reprod Dev. 2000. PMID: 10911397 - Pluripotential stem cells derived from migrating primordial germ cells.
Durcova-Hills G, Ainscough J, McLaren A. Durcova-Hills G, et al. Differentiation. 2001 Oct;68(4-5):220-6. doi: 10.1046/j.1432-0436.2001.680409.x. Differentiation. 2001. PMID: 11776474 - Epigenotype switching of imprintable loci in embryonic germ cells.
Tada T, Tada M, Hilton K, Barton SC, Sado T, Takagi N, Surani MA. Tada T, et al. Dev Genes Evol. 1998 Feb;207(8):551-61. doi: 10.1007/s004270050146. Dev Genes Evol. 1998. PMID: 9510550 - Germ cells and pluripotent stem cells in the mouse.
McLaren A, Durcova-Hills G. McLaren A, et al. Reprod Fertil Dev. 2001;13(7-8):661-4. doi: 10.1071/rd01080. Reprod Fertil Dev. 2001. PMID: 11999318 Review.
Cited by
- A rapid and stable spontaneous reprogramming system of Spermatogonial stem cells to Pluripotent State.
Wei R, Zhang X, Li X, Wen J, Liu H, Fu J, Li L, Zhang W, Liu Z, Yang Y, Zou K. Wei R, et al. Cell Biosci. 2023 Dec 1;13(1):222. doi: 10.1186/s13578-023-01150-z. Cell Biosci. 2023. PMID: 38041111 Free PMC article. - The mouse allantois: new insights at the embryonic-extraembryonic interface.
Downs KM. Downs KM. Philos Trans R Soc Lond B Biol Sci. 2022 Dec 5;377(1865):20210251. doi: 10.1098/rstb.2021.0251. Epub 2022 Oct 17. Philos Trans R Soc Lond B Biol Sci. 2022. PMID: 36252214 Free PMC article. Review. - The foundational framework of tumors: Gametogenesis, p53, and cancer.
Liu C, Moten A, Ma Z, Lin HK. Liu C, et al. Semin Cancer Biol. 2022 Jun;81:193-205. doi: 10.1016/j.semcancer.2021.04.018. Epub 2021 Apr 30. Semin Cancer Biol. 2022. PMID: 33940178 Free PMC article. Review. - A most formidable arsenal: genetic technologies for building a better mouse.
Clark JF, Dinsmore CJ, Soriano P. Clark JF, et al. Genes Dev. 2020 Oct 1;34(19-20):1256-1286. doi: 10.1101/gad.342089.120. Genes Dev. 2020. PMID: 33004485 Free PMC article. Review. - Cardiovascular and body weight regulation changes in transgenic mice overexpressing thyrotropin-releasing hormone (TRH).
Landa MS, García SI, Schuman ML, Peres Diaz LS, Aisicovich M, Pirola CJ. Landa MS, et al. J Physiol Biochem. 2020 Nov;76(4):599-608. doi: 10.1007/s13105-020-00765-x. Epub 2020 Sep 11. J Physiol Biochem. 2020. PMID: 32914279
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous