Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes - PubMed (original) (raw)
. 1995 Apr 28;270(17):9991-10001.
doi: 10.1074/jbc.270.17.9991.
Affiliations
- PMID: 7730383
- DOI: 10.1074/jbc.270.17.9991
Free article
Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes
J A Goodnight et al. J Biol Chem. 1995.
Free article
Abstract
We have used immunocytochemical analyses to characterize the subcellular distribution of protein kinase C (PKC)-alpha, -beta I, -beta II, -gamma, -delta, -epsilon, -zeta, and -eta in NIH 3T3 fibroblasts that overexpress these different PKC isozymes. Immunofluorescence studies and Western blotting with antibodies specific for individual isoforms revealed that before activation the majority of the PKCs are not membrane-bound and are diffusely distributed throughout the cytoplasm. In addition, a fraction of PKC-delta and -eta appears membrane-bound and concentrated in the Golgi apparatus. Activation of each isozyme's kinase activity (with the exception of PKC-zeta) by treatment of these cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in isozyme-specific alterations of cell morphology, as well as in a rapid, selective redistribution of the different PKC isozymes to distinct subcellular structures. Within minutes after 12-O-tetradecanoylphorbol-13-acetate treatment, PKC-alpha and -epsilon concentrate at cell margins. In addition, PKC-alpha accumulates in the endoplasmic reticulum, PKC-beta II associates with actin-rich microfilaments of the cytoskeleton, PKC-gamma accumulates in Golgi organelles, and PKC-epsilon associates with nuclear membranes. Our results demonstrate that each activated PKC isozyme specifically associates with a particular cellular structure, presumably containing the substrate for that isozyme. These findings support the hypothesis that PKC substrate specificity in vivo is mediated, at least in part, by the restricted subcellular locale for each PKC isozyme and its target protein.
Similar articles
- Selective subcellular redistributions of protein kinase C isoforms by chemical hypoxia.
Huang HM, Weng CH, Ou SC, Hwang T. Huang HM, et al. J Neurosci Res. 1999 Jun 15;56(6):668-78. doi: 10.1002/(SICI)1097-4547(19990615)56:6<668::AID-JNR13>3.0.CO;2-R. J Neurosci Res. 1999. PMID: 10374822 - Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity.
Mischak H, Goodnight JA, Kolch W, Martiny-Baron G, Schaechtle C, Kazanietz MG, Blumberg PM, Pierce JH, Mushinski JF. Mischak H, et al. J Biol Chem. 1993 Mar 25;268(9):6090-6. J Biol Chem. 1993. PMID: 8454583 - Targeting the protein kinase C family in the diabetic kidney: lessons from analysis of mutant mice.
Meier M, Menne J, Haller H. Meier M, et al. Diabetologia. 2009 May;52(5):765-75. doi: 10.1007/s00125-009-1278-y. Epub 2009 Feb 24. Diabetologia. 2009. PMID: 19238353 Review. - Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation.
Kazanietz MG, Cooke M. Kazanietz MG, et al. J Biol Chem. 2024 Mar;300(3):105692. doi: 10.1016/j.jbc.2024.105692. Epub 2024 Jan 30. J Biol Chem. 2024. PMID: 38301892 Free PMC article. Review.
Cited by
- Changes in gene expression and cellular architecture in an ovarian cancer progression model.
Creekmore AL, Silkworth WT, Cimini D, Jensen RV, Roberts PC, Schmelz EM. Creekmore AL, et al. PLoS One. 2011 Mar 3;6(3):e17676. doi: 10.1371/journal.pone.0017676. PLoS One. 2011. PMID: 21390237 Free PMC article. - Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein.
Puls A, Schmidt S, Grawe F, Stabel S. Puls A, et al. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6191-6. doi: 10.1073/pnas.94.12.6191. Proc Natl Acad Sci U S A. 1997. PMID: 9177193 Free PMC article. - Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.
Ringvold HC, Khalil RA. Ringvold HC, et al. Adv Pharmacol. 2017;78:203-301. doi: 10.1016/bs.apha.2016.06.002. Epub 2016 Jul 18. Adv Pharmacol. 2017. PMID: 28212798 Free PMC article. Review. - Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho kinase and PKCβ2.
Soliman H, Gador A, Lu YH, Lin G, Bankar G, MacLeod KM. Soliman H, et al. Am J Physiol Heart Circ Physiol. 2012 Oct 15;303(8):H989-H1000. doi: 10.1152/ajpheart.00416.2012. Epub 2012 Aug 3. Am J Physiol Heart Circ Physiol. 2012. PMID: 22865386 Free PMC article. - Protein kinase C δ regulates the release of collagen type I from vascular smooth muscle cells via regulation of Cdc42.
Lengfeld J, Wang Q, Zohlman A, Salvarezza S, Morgan S, Ren J, Kato K, Rodriguez-Boulan E, Liu B. Lengfeld J, et al. Mol Biol Cell. 2012 May;23(10):1955-63. doi: 10.1091/mbc.E11-06-0531. Epub 2012 Mar 28. Mol Biol Cell. 2012. PMID: 22456512 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources