Embryonic development of the larval body wall musculature of Drosophila melanogaster - PubMed (original) (raw)
Review
Embryonic development of the larval body wall musculature of Drosophila melanogaster
S M Abmayr et al. Trends Genet. 1995 Apr.
Abstract
The somatic, or body wall, muscles of the larva of Drosophila melanogaster are composed of an elaborate pattern of segmentally repeating fibers that form during embryogenesis. The primordia of these muscles progress from morphologically indistinct mesodermal cells to multinucleate syncytia with unique characteristics that include shape, size, location and attachment to the epidermis. Although relatively little is known about the development of the musculature and the mechanisms by which this elaborate pattern is achieved, recent progress has begun to reveal key players in this process.
Similar articles
- The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis.
Klapper R. Klapper R. Mech Dev. 2000 Jul;95(1-2):47-54. doi: 10.1016/s0925-4773(00)00328-2. Mech Dev. 2000. PMID: 10906449 - Fate map and cell lineage relationships of thoracic and abdominal mesodermal anlagen in Drosophila melanogaster.
Klapper R, Holz A, Janning W. Klapper R, et al. Mech Dev. 1998 Feb;71(1-2):77-87. doi: 10.1016/s0925-4773(97)00205-0. Mech Dev. 1998. PMID: 9507069 - Variation in mesoderm specification across Drosophilids is compensated by different rates of myoblast fusion during body wall musculature development.
Belu M, Mizutani CM. Belu M, et al. PLoS One. 2011;6(12):e28970. doi: 10.1371/journal.pone.0028970. Epub 2011 Dec 14. PLoS One. 2011. PMID: 22194964 Free PMC article. - Specification of the somatic musculature in Drosophila.
Dobi KC, Schulman VK, Baylies MK. Dobi KC, et al. Wiley Interdiscip Rev Dev Biol. 2015 Jul-Aug;4(4):357-75. doi: 10.1002/wdev.182. Epub 2015 Feb 27. Wiley Interdiscip Rev Dev Biol. 2015. PMID: 25728002 Free PMC article. Review. - Morphogenesis of the somatic musculature in Drosophila melanogaster.
Schulman VK, Dobi KC, Baylies MK. Schulman VK, et al. Wiley Interdiscip Rev Dev Biol. 2015 Jul-Aug;4(4):313-34. doi: 10.1002/wdev.180. Epub 2015 Mar 11. Wiley Interdiscip Rev Dev Biol. 2015. PMID: 25758712 Free PMC article. Review.
Cited by
- Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila.
Poovathumkadavil P, Jagla K. Poovathumkadavil P, et al. Cells. 2020 Jun 25;9(6):1543. doi: 10.3390/cells9061543. Cells. 2020. PMID: 32630420 Free PMC article. Review. - Whole-mount immunostaining of Drosophila skeletal muscle.
Hunt LC, Demontis F. Hunt LC, et al. Nat Protoc. 2013 Dec;8(12):2496-501. doi: 10.1038/nprot.2013.156. Epub 2013 Nov 14. Nat Protoc. 2013. PMID: 24232251 - Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis.
Schaub C, Frasch M. Schaub C, et al. Dev Biol. 2013 Apr 15;376(2):245-59. doi: 10.1016/j.ydbio.2013.01.022. Epub 2013 Feb 1. Dev Biol. 2013. PMID: 23380635 Free PMC article. - WNT5 interacts with the Ryk receptors doughnut and derailed to mediate muscle attachment site selection in Drosophila melanogaster.
Lahaye LL, Wouda RR, de Jong AW, Fradkin LG, Noordermeer JN. Lahaye LL, et al. PLoS One. 2012;7(3):e32297. doi: 10.1371/journal.pone.0032297. Epub 2012 Mar 5. PLoS One. 2012. PMID: 22403643 Free PMC article. - Proteasome function is required to maintain muscle cellular architecture.
Haas KF, Woodruff E 3rd, Broadie K. Haas KF, et al. Biol Cell. 2007 Nov;99(11):615-26. doi: 10.1042/BC20070019. Biol Cell. 2007. PMID: 17523916 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases