Structural basis of substrate specificity in the serine proteases - PubMed (original) (raw)
Review
Structural basis of substrate specificity in the serine proteases
J J Perona et al. Protein Sci. 1995 Mar.
Abstract
Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system.
Similar articles
- Random mutagenesis of the substrate-binding site of a serine protease. A new library of alpha-lytic protease S1 mutants.
Graham LD, Haggett KD, Hayes PJ, Schober PA, Jennings PA, Whittaker RG. Graham LD, et al. Ann N Y Acad Sci. 1995 Mar 31;750:10-4. doi: 10.1111/j.1749-6632.1995.tb19917.x. Ann N Y Acad Sci. 1995. PMID: 7785837 No abstract available. - A novel substrate-binding pocket interaction restricts the specificity of the human NK cell-specific serine protease, Met-ase-1.
Smyth MJ, O'Connor MD, Trapani JA, Kershaw MH, Brinkworth RI. Smyth MJ, et al. J Immunol. 1996 Jun 1;156(11):4174-81. J Immunol. 1996. PMID: 8666785 - Serine protease mechanism and specificity.
Hedstrom L. Hedstrom L. Chem Rev. 2002 Dec;102(12):4501-24. doi: 10.1021/cr000033x. Chem Rev. 2002. PMID: 12475199 Review. No abstract available. - Structural and energetic determinants of the S1-site specificity in serine proteases.
Czapinska H, Otlewski J. Czapinska H, et al. Eur J Biochem. 1999 Mar;260(3):571-95. doi: 10.1046/j.1432-1327.1999.00160.x. Eur J Biochem. 1999. PMID: 10102985 Review.
Cited by
- High resolution analysis of proteolytic substrate processing.
Schillinger J, Koci M, Bravo-Rodriguez K, Heilmann G, Kaschani F, Kaiser M, Beuck C, Luecke H, Huber R, Hellerschmied D, Burston SG, Ehrmann M. Schillinger J, et al. J Biol Chem. 2024 Nov;300(11):107812. doi: 10.1016/j.jbc.2024.107812. Epub 2024 Sep 21. J Biol Chem. 2024. PMID: 39313096 Free PMC article. - The Crystal Structure of the Michaelis-Menten Complex of C1 Esterase Inhibitor and C1s Reveals Novel Insights into Complement Regulation.
Garrigues RJ, Garrison MP, Garcia BL. Garrigues RJ, et al. J Immunol. 2024 Sep 1;213(5):718-729. doi: 10.4049/jimmunol.2400194. J Immunol. 2024. PMID: 38995166 - The Set of Serine Peptidases of the Tenebrio molitor Beetle: Transcriptomic Analysis on Different Developmental Stages.
Zhiganov NI, Vinokurov KS, Salimgareev RS, Tereshchenkova VF, Dunaevsky YE, Belozersky MA, Elpidina EN. Zhiganov NI, et al. Int J Mol Sci. 2024 May 25;25(11):5743. doi: 10.3390/ijms25115743. Int J Mol Sci. 2024. PMID: 38891931 Free PMC article. - Surface-associated residues in subtilisins contribute to poly-L-lactic acid depolymerization via enzyme adsorption.
Cannon JA, Zhou Y, Qualey LT, Reynolds TB. Cannon JA, et al. Microb Biotechnol. 2024 Jun;17(6):e14473. doi: 10.1111/1751-7915.14473. Microb Biotechnol. 2024. PMID: 38877615 Free PMC article. - Codon switching of conserved Ser residues in coagulation and fibrinolytic proteases.
Stojanovski BM, Di Cera E. Stojanovski BM, et al. J Thromb Haemost. 2024 Sep;22(9):2495-2501. doi: 10.1016/j.jtha.2024.05.021. Epub 2024 May 29. J Thromb Haemost. 2024. PMID: 38821294
References
- J Biol Chem. 1971 Aug 25;246(16):5031-9 - PubMed
- Proc Natl Acad Sci U S A. 1987 Aug;84(15):5167-71 - PubMed
- Eur J Biochem. 1992 Nov 1;209(3):869-74 - PubMed
- Eur J Biochem. 1991 Apr 23;197(2):441-7 - PubMed
- J Mol Biol. 1994 Jan 14;235(2):695-708 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources