Regulation of scute function by extramacrochaete in vitro and in vivo - PubMed (original) (raw)

Regulation of scute function by extramacrochaete in vitro and in vivo

C V Cabrera et al. Development. 1994 Dec.

Abstract

The pattern of adult sensilla in Drosophila is established by the dosage-sensitive interaction of two antagonistic groups of genes. Sensilla development is promoted by members of the achaete-scute complex and the daughterless gene whereas it is suppressed by whereas extramacrochaete (emc) and hairy. All these genes encode helix-loop-helix proteins. The products of the achaete-scute complex and daughterless interact to form heterodimers able to activate transcription. In this report, we show that (1) extra-macrochaete forms heterodimers with the achaete, scute, lethal of scute and daughterless products; (2) extramacrochaete inhibits DNA-binding of Achaete, Scute and Lethal of Scute/Daughterless heterodimers and Daughterless homodimers and (3) extramacrochaete inhibits transcription activation by heterodimers in a yeast assay system. In addition, we have studied the expression patterns of scute in wild-type and extramacrochaete mutant imaginal discs. Expression of scute RNA during imaginal development occurs in groups of cells, but high levels of protein accumulate in the nuclei of only a subset of the RNA-expressing cells. The pattern is dynamic and results in a small number of protein-containing cells that correspond to sensillum precursors. extramacrochaete loss-of-function alleles develop extra sensilla and correspondingly display a larger number of cells with scute protein. These cells appear to arise from those that in the wild type already express scute RNA; hence, extramacrochaete is a repressor of scute function whose action may take place post-transcriptionally.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources