A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes - PubMed (original) (raw)
Comparative Study
A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes
B van Gemen et al. J Virol Methods. 1994 Sep.
Abstract
Quantification of HIV-1 viral RNA based on co-amplification of an internal standard Q-RNA dilution series requires a number of NASBA nucleic acid amplification reactions. For each internal standard Q-RNA concentration a separate NASBA amplification has to be performed. The development of an electrochemiluminescent (ECL) detection system with a dynamic signal detection range over 5 orders of magnitude enabled simplification of the Q-NASBA protocol. Three distinguishable Q-RNAs (QA, QB and QC) are mixed with the wild-type sample at different amounts (i.e. 10(4) QA, 10(3) QB and 10(2) QC molecules) and co-amplified with the wild-type RNA in one tube. Using ECL-labelled oligonucleotides the wild-type, QA, QB and QC amplificates are separately detected with a semi-automated ECL detection instrument and the ratio of the signals determined. The amount of initial wild-type RNA can be calculated from the ratio of wild-type signal to QA, QB and QC signals. This one-tube Q-NASBA protocol was compared to the earlier described protocol with six amplifications per quantification using model systems and HIV-1 RNA isolated from plasma of HIV-1-infected individuals. In all cases the quantification results of HIV-1 RNA were comparable between the two methods tested. Due to the use of only one amplification per quantification in the one-tube Q-NASBA protocol the QA, QB and QC internal standard RNA molecules can be added to the sample before nucleic acid isolation. The ratio of QA:QB:QC:WT RNAs, from which the initial input of WT-RNA is calculated, will remain constant independent of any loss that might occur during the nucleic acid isolation.
Similar articles
- Detection of HIV-1 RNA in plasma and serum samples using the NASBA amplification system compared to RNA-PCR.
Vandamme AM, Van Dooren S, Kok W, Goubau P, Fransen K, Kievits T, Schmit JC, De Clercq E, Desmyter J. Vandamme AM, et al. J Virol Methods. 1995 Mar;52(1-2):121-32. doi: 10.1016/0166-0934(94)00151-6. J Virol Methods. 1995. PMID: 7769025 - NASBA technology: isothermal RNA amplification in qualitative and quantitative diagnostics.
Romano JW, Williams KG, Shurtliff RN, Ginocchio C, Kaplan M. Romano JW, et al. Immunol Invest. 1997 Jan-Feb;26(1-2):15-28. doi: 10.3109/08820139709048912. Immunol Invest. 1997. PMID: 9037609 - Quantification of HIV-1 RNA in plasma using NASBA during HIV-1 primary infection.
van Gemen B, Kievits T, Schukkink R, van Strijp D, Malek LT, Sooknanan R, Huisman HG, Lens P. van Gemen B, et al. J Virol Methods. 1993 Jul;43(2):177-87. doi: 10.1016/0166-0934(93)90075-3. J Virol Methods. 1993. PMID: 8366168 - NASBA: a novel, isothermal detection technology for qualitative and quantitative HIV-1 RNA measurements.
Romano JW, van Gemen B, Kievits T. Romano JW, et al. Clin Lab Med. 1996 Mar;16(1):89-103. Clin Lab Med. 1996. PMID: 8867585 Review. - Characteristics and applications of nucleic acid sequence-based amplification (NASBA).
Deiman B, van Aarle P, Sillekens P. Deiman B, et al. Mol Biotechnol. 2002 Feb;20(2):163-79. doi: 10.1385/MB:20:2:163. Mol Biotechnol. 2002. PMID: 11876473 Review.
Cited by
- Listeria monocytogenes in foods-From culture identification to whole-genome characteristics.
Osek J, Lachtara B, Wieczorek K. Osek J, et al. Food Sci Nutr. 2022 May 3;10(9):2825-2854. doi: 10.1002/fsn3.2910. eCollection 2022 Sep. Food Sci Nutr. 2022. PMID: 36171778 Free PMC article. Review. - Advances and insights in the diagnosis of viral infections.
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Dronina J, et al. J Nanobiotechnology. 2021 Oct 30;19(1):348. doi: 10.1186/s12951-021-01081-2. J Nanobiotechnology. 2021. PMID: 34717656 Free PMC article. Review. - Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections.
Obande GA, Banga Singh KK. Obande GA, et al. Infect Drug Resist. 2020 Feb 12;13:455-483. doi: 10.2147/IDR.S217571. eCollection 2020. Infect Drug Resist. 2020. PMID: 32104017 Free PMC article. Review. - Point-of-Care HIV Viral Load Testing: an Essential Tool for a Sustainable Global HIV/AIDS Response.
Drain PK, Dorward J, Bender A, Lillis L, Marinucci F, Sacks J, Bershteyn A, Boyle DS, Posner JD, Garrett N. Drain PK, et al. Clin Microbiol Rev. 2019 May 15;32(3):e00097-18. doi: 10.1128/CMR.00097-18. Print 2019 Jun 19. Clin Microbiol Rev. 2019. PMID: 31092508 Free PMC article. Review. - Miniaturized devices for point of care molecular detection of HIV.
Mauk M, Song J, Bau HH, Gross R, Bushman FD, Collman RG, Liu C. Mauk M, et al. Lab Chip. 2017 Jan 31;17(3):382-394. doi: 10.1039/c6lc01239f. Lab Chip. 2017. PMID: 28092381 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical