Three-dimensional solution structure of the pleckstrin homology domain from dynamin - PubMed (original) (raw)

Background: The pleckstrin homology (PH) domain is a region of approximately 100 amino acids, defined by sequence similarity, that has been found in about 60 proteins, many of which are involved in signal transduction downstream of cell surface receptors; the function of PH domains is unknown. The only clue to the function of PH domains is the circumstantial evidence that they may link beta gamma subunits of G proteins to second messenger systems. Knowledge of the three-dimensional structures of PH domains should help to elucidate the roles they play in the proteins that contain them.

Results: Using homonuclear and heteronuclear magnetic resonance spectroscopy, we have determined the solution structure of the PH domain of the GTPase dynamin, one of a number of proteins that have PH domains and interact with GTP. The fold of the dynamin PH domain is composed of two antiparallel beta-sheets, which pack face-to-face at an angle of approximately 60 degrees. The first beta-sheet comprises four strands (residues 13-58) from the amino-terminal half of the protein sequence; the second beta-sheet contains three strands (residues 63-99). A single alpha-helix (residues 102-116) flanks one edge of the interface between the two sheets, parallel in orientation to the second sheet, in an alpha/beta roll motif similar to that of the B oligomer of verotoxin-1 from Escherichia coli.

Conclusions: The structure of the dynamin PH domain is very similar to the recently reported structures of the pleckstrin and spectrin PH domains. This shows that, despite the low level of sequence similarity between different PH domains, they do have a characteristic polypeptide fold. On the basis of our structure, the suggestion that PH domains engage in coiled-coil interactions with G protein beta gamma subunits seems unlikely and should be re-evaluated.