A fructose-rich diet decreases insulin-stimulated glucose incorporation into lipids but not glucose transport in adipocytes of normal and diabetic rats - PubMed (original) (raw)

Comparative Study

. 1995 Feb;125(2):164-71.

doi: 10.1093/jn/125.2.164.

Affiliations

Comparative Study

A fructose-rich diet decreases insulin-stimulated glucose incorporation into lipids but not glucose transport in adipocytes of normal and diabetic rats

J Luo et al. J Nutr. 1995 Feb.

Abstract

To study the cellular mechanisms underlying fructose-induced insulin resistance in rats, the effects of fructose feeding on insulin-stimulated glucose transport, oxidation and incorporation into lipids in epididymal adipocytes were evaluated in 27 normal and 27 noninsulin-dependent diabetic male Sprague-Dawley rats. Diabetes was induced by streptozotocin injection 2 d after birth. At 5 wk of age, both normal and diabetic rats were fed a diet containing 62% carbohydrate as fructose, dextrose or cornstarch. Fructose feeding for 6 wk induced glucose intolerance in normal rats (P < 0.05) and aggravated that of diabetic rats (P < 0.05). Plasma triacylglycerol concentration was higher in fructose-fed than in starch-fed or dextrose-fed rats (P < 0.05). Adipocytes of fructose-fed rats had significantly lower maximum insulin-stimulated glucose incorporation into total lipids than those of rats fed starch, and tended (P = 0.22) to have lower production of CO2 from glucose than adipocytes of the other dietary groups. Glucose transport in adipocytes of dextrose-, starch- and fructose-fed rats did not differ. We conclude that in both normal and diabetic rats, a chronic fructose-rich diet induced hypertriacylglycerolemia, glucose intolerance and insulin resistance of adipocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources