Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties - PubMed (original) (raw)
. 1995 Mar 3;270(9):4882-9.
doi: 10.1074/jbc.270.9.4882.
Affiliations
- PMID: 7876261
- DOI: 10.1074/jbc.270.9.4882
Free article
Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties
C P Selby et al. J Biol Chem. 1995.
Free article
Abstract
The 130-kDa mfd gene product is required for coupling transcription to repair in Escherichia coli. Mfd displaces E. coli RNA polymerase (Pol) stalled at a lesion, binds to the damage recognition protein UvrA, and increases the template strand repair rate during transcription. Here, the interactions of Mfd (transcription-repair coupling factor, TRCF) with DNA, RNA Pol, and UvrA were investigated. TRCF bound nonspecifically to double stranded DNA; binding to DNA produced alternating DNase I-protected and -hypersensitive regions, suggesting possible wrapping of the DNA around the enzyme. Weaker binding to single stranded DNA and no binding to single stranded RNA were observed. DNA binding required ATP, and hydrolysis of ATP promoted dissociation. Removal of a stalled RNA Pol also requires ATP hydrolysis. Apparently, TRCF recognizes a stalled elongation complex by directly interacting with RNA Pol, since binding to a synthetic transcription bubble was no stronger than binding to double stranded DNA, and binding to free RNA Pol holoenzyme and to initiation and elongation complexes in the absence of adenosine 5'-O-(thiotriphosphate) were observed. Structure-function analysis showed that residues 379-571 are involved in binding to a stalled RNAP. The helicase motifs region, residues 571-931, binds to ATP and duplex polynucleotide (DNA:DNA or DNA:RNA). Dissociation of the ternary complex upon hydrolysis of ATP also requires the carboxyl terminus of TRCF. Finally, residues 1-378 bind to UvrA and deliver the damage recognition component of the excision nuclease to the lesion.
Similar articles
- Structure and function of transcription-repair coupling factor. II. Catalytic properties.
Selby CP, Sancar A. Selby CP, et al. J Biol Chem. 1995 Mar 3;270(9):4890-5. doi: 10.1074/jbc.270.9.4890. J Biol Chem. 1995. PMID: 7876262 - Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface.
Deaconescu AM, Sevostyanova A, Artsimovitch I, Grigorieff N. Deaconescu AM, et al. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3353-8. doi: 10.1073/pnas.1115105109. Epub 2012 Feb 13. Proc Natl Acad Sci U S A. 2012. PMID: 22331906 Free PMC article. - Molecular mechanism of transcription-repair coupling.
Selby CP, Sancar A. Selby CP, et al. Science. 1993 Apr 2;260(5104):53-8. doi: 10.1126/science.8465200. Science. 1993. PMID: 8465200 - Mfd Protein and Transcription-Repair Coupling in Escherichia coli.
Selby CP. Selby CP. Photochem Photobiol. 2017 Jan;93(1):280-295. doi: 10.1111/php.12675. Epub 2017 Jan 18. Photochem Photobiol. 2017. PMID: 27864884 Free PMC article. Review. - The bacterial transcription repair coupling factor.
Deaconescu AM, Savery N, Darst SA. Deaconescu AM, et al. Curr Opin Struct Biol. 2007 Feb;17(1):96-102. doi: 10.1016/j.sbi.2007.01.005. Epub 2007 Jan 18. Curr Opin Struct Biol. 2007. PMID: 17239578 Free PMC article. Review.
Cited by
- Interplay of DNA repair with transcription: from structures to mechanisms.
Deaconescu AM, Artsimovitch I, Grigorieff N. Deaconescu AM, et al. Trends Biochem Sci. 2012 Dec;37(12):543-52. doi: 10.1016/j.tibs.2012.09.002. Epub 2012 Oct 17. Trends Biochem Sci. 2012. PMID: 23084398 Free PMC article. Review. - Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase.
Smith AJ, Szczelkun MD, Savery NJ. Smith AJ, et al. Nucleic Acids Res. 2007;35(6):1802-11. doi: 10.1093/nar/gkm019. Epub 2007 Feb 28. Nucleic Acids Res. 2007. PMID: 17329375 Free PMC article. - A phylogenomic study of DNA repair genes, proteins, and processes.
Eisen JA, Hanawalt PC. Eisen JA, et al. Mutat Res. 1999 Dec 7;435(3):171-213. doi: 10.1016/s0921-8777(99)00050-6. Mutat Res. 1999. PMID: 10606811 Free PMC article. - CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence.
Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS. Stallings CL, et al. Cell. 2009 Jul 10;138(1):146-59. doi: 10.1016/j.cell.2009.04.041. Cell. 2009. PMID: 19596241 Free PMC article. - Structure-Guided Designing and Evaluation of Peptides Targeting Bacterial Transcription.
Kaur G, Kapoor S, Kaundal S, Dutta D, Thakur KG. Kaur G, et al. Front Bioeng Biotechnol. 2020 Sep 8;8:797. doi: 10.3389/fbioe.2020.00797. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 33014990 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases