Protein-based phylogenies support a chimeric origin for the eukaryotic genome - PubMed (original) (raw)
Comparative Study
Protein-based phylogenies support a chimeric origin for the eukaryotic genome
G B Golding et al. Mol Biol Evol. 1995 Jan.
Abstract
The phylogenetic position of the archaebacteria and the place of eukaryotes in the history of life remain a question of debate. Recent studies based on some protein-sequence data have obtained unusual phylogenies for these organisms. We therefore collected the protein sequences that were available with representatives from each of the major forms of life: the gram-negative bacteria, gram-positive bacteria, archaebacteria, and eukaryotes. Monophyletic, unrooted phylogenies based on these sequence data show that seven of 24 proteins yield a significant gram-positive-archaebacteria clade/gram-negative-eukaryotic clade. The phylogenies for these seven proteins cannot be explained by the traditional three-way split of the eukaryotes, archaebacteria, and eubacteria. Nine of the 24 proteins yield the traditional gram-positive-gram-negative clade/archaebacteria-eukaryotic clade. The remaining eight proteins give phylogenies that cannot be statistically distinguished. These results support the hypothesis of a chimeric origin for the eukaryotic cell nucleus formed from the fusion of an archaebacteria and a gram-negative bacteria.
Similar articles
- Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus.
Gupta RS, Singh B. Gupta RS, et al. Curr Biol. 1994 Dec 1;4(12):1104-14. doi: 10.1016/s0960-9822(00)00249-9. Curr Biol. 1994. PMID: 7704574 - Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes.
Gupta RS. Gupta RS. Antonie Van Leeuwenhoek. 1997 Jul;72(1):49-61. doi: 10.1023/a:1000278224701. Antonie Van Leeuwenhoek. 1997. PMID: 9296263 - Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes.
Gupta RS, Golding GB. Gupta RS, et al. J Mol Evol. 1993 Dec;37(6):573-82. doi: 10.1007/BF00182743. J Mol Evol. 1993. PMID: 8114110 - Life's third domain (Archaea): an established fact or an endangered paradigm?
Gupta RS. Gupta RS. Theor Popul Biol. 1998 Oct;54(2):91-104. doi: 10.1006/tpbi.1998.1376. Theor Popul Biol. 1998. PMID: 9733652 Review.
Cited by
- A genomic timescale for the origin of eukaryotes.
Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS, Watanabe H. Hedges SB, et al. BMC Evol Biol. 2001;1:4. doi: 10.1186/1471-2148-1-4. Epub 2001 Sep 12. BMC Evol Biol. 2001. PMID: 11580860 Free PMC article. - Horizontal gene transfer in evolution: facts and challenges.
Boto L. Boto L. Proc Biol Sci. 2010 Mar 22;277(1683):819-27. doi: 10.1098/rspb.2009.1679. Epub 2009 Oct 28. Proc Biol Sci. 2010. PMID: 19864285 Free PMC article. Review. - Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.
Gupta RS. Gupta RS. Microbiol Mol Biol Rev. 1998 Dec;62(4):1435-91. doi: 10.1128/MMBR.62.4.1435-1491.1998. Microbiol Mol Biol Rev. 1998. PMID: 9841678 Free PMC article. Review. - Different clustering of genomes across life using the A-T-C-G and degenerate R-Y alphabets: early and late signaling on genome evolution?
Kirzhner V, Paz A, Volkovich Z, Nevo E, Korol A. Kirzhner V, et al. J Mol Evol. 2007 Apr;64(4):448-56. doi: 10.1007/s00239-006-0178-8. Epub 2007 Mar 19. J Mol Evol. 2007. PMID: 17479343 - The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon.
Margulis L, Chapman M, Guerrero R, Hall J. Margulis L, et al. Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13080-5. doi: 10.1073/pnas.0604985103. Epub 2006 Aug 22. Proc Natl Acad Sci U S A. 2006. PMID: 16938841 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources