Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma - PubMed (original) (raw)
. 1994 Dec;3(12):2169-73.
doi: 10.1093/hmg/3.12.2169.
Affiliations
- PMID: 7881415
- DOI: 10.1093/hmg/3.12.2169
Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma
K Foster et al. Hum Mol Genet. 1994 Dec.
Abstract
Loss of heterozygosity (LOH) studies have suggested that somatic mutations of a tumour suppressor gene or genes on chromosome 3p are a critical event in the pathogenesis of non-familial renal cell carcinoma (RCC). Germline mutations of the von Hippel-Lindau (VHL) disease gene predispose to early onset and multifocal clear cell renal cell carcinoma, and the mechanism of tumorigenesis in VHL disease is consistent with a one-hit mutation model. To investigate the role of somatic VHL gene mutations in non-familial RCC, we analysed 99 primary RCC for VHL gene mutations by SSCP and heteroduplex analysis. Somatic VHL gene mutations were identified in 30 of 65 (46%) sporadic RCC with chromosome 3p allele loss and one of 34 (3%) tumours with no LOH for chromosome 3p. The VHL gene mutations were heterogeneous (17 frameshift deletions, eight missense mutations, four frameshift insertions, one nonsense and one splice site mutation), but no mutations were detected in the first 120 codons of cloned coding sequence. Most RCCs with somatic VHL mutations (23 of 27 (85%) informative cases) had chromosome 3p25 allele loss in the region of the VHL gene so that both alleles of the VHL gene had been inactivated as expected from a two-hit model of tumorigenesis. Detailed histopathology was available for 59 of the tumours investigated: 18 of 43 (42%) RCC with a clear cell appearance had a somatic VHL gene mutation but none of 16 non-clear cell RCC (eight chromophilic, three chromophobe and five oncocytoma) (chi2 = 7.77, P < 0.025).(ABSTRACT TRUNCATED AT 250 WORDS)
Similar articles
- Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis.
Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER. Clifford SC, et al. Genes Chromosomes Cancer. 1998 Jul;22(3):200-9. doi: 10.1002/(sici)1098-2264(199807)22:3<200::aid-gcc5>3.0.co;2-#. Genes Chromosomes Cancer. 1998. PMID: 9624531 - Molecular study of a new family with hereditary renal cell carcinoma and a translocation t(3;8)(p13;q24.1).
Meléndez B, Rodríguez-Perales S, Martínez-Delgado B, Otero I, Robledo M, Martínez-Ramírez A, Ruiz-Llorente S, Urioste M, Cigudosa JC, Benítez J. Meléndez B, et al. Hum Genet. 2003 Feb;112(2):178-85. doi: 10.1007/s00439-002-0848-6. Epub 2002 Nov 13. Hum Genet. 2003. PMID: 12522559 - Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma.
Morrissey C, Martinez A, Zatyka M, Agathanggelou A, Honorio S, Astuti D, Morgan NV, Moch H, Richards FM, Kishida T, Yao M, Schraml P, Latif F, Maher ER. Morrissey C, et al. Cancer Res. 2001 Oct 1;61(19):7277-81. Cancer Res. 2001. PMID: 11585766 - Molecular genetic studies of sporadic and familial renal cell carcinoma.
Gnarra JR, Glenn GM, Latif F, Anglard P, Lerman MI, Zbar B, Linehan WM. Gnarra JR, et al. Urol Clin North Am. 1993 May;20(2):207-16. Urol Clin North Am. 1993. PMID: 8098558 Review. - Von Hippel-Lindau disease and sporadic renal cell carcinoma.
Zbar B. Zbar B. Cancer Surv. 1995;25:219-32. Cancer Surv. 1995. PMID: 8718521 Review.
Cited by
- Renal Cell Carcinoma Metastatic to the Thyroid Gland: A Comparative Molecular Study Between the Primary and the Metastatic Tumor.
Matias-Guiu X, Garcia A, Curell R, Prat J. Matias-Guiu X, et al. Endocr Pathol. 1998 Autumn;9(3):255-260. doi: 10.1007/BF02739966. Endocr Pathol. 1998. PMID: 12114717 - Germ-line mutation analysis in patients with von Hippel-Lindau disease in Japan: an extended study of 77 families.
Yoshida M, Ashida S, Kondo K, Kobayashi K, Kanno H, Shinohara N, Shitara N, Kishida T, Kawakami S, Baba M, Yamamoto I, Hosaka M, Shuin T, Yao M. Yoshida M, et al. Jpn J Cancer Res. 2000 Feb;91(2):204-12. doi: 10.1111/j.1349-7006.2000.tb00933.x. Jpn J Cancer Res. 2000. PMID: 10761708 Free PMC article. - Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma.
Ricketts C, Zeegers MP, Lubinski J, Maher ER. Ricketts C, et al. PLoS One. 2009 Jun 24;4(6):e6037. doi: 10.1371/journal.pone.0006037. PLoS One. 2009. PMID: 19551141 Free PMC article. - The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis.
Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, Bartnik E, Kukwa W, Kieda C, Szczylik C. Myszczyszyn A, et al. Stem Cell Rev Rep. 2015 Dec;11(6):919-43. doi: 10.1007/s12015-015-9611-y. Stem Cell Rev Rep. 2015. PMID: 26210994 Free PMC article. Review. - Risk prediction for metastasis of clear cell renal cell carcinoma using digital multiplex ligation-dependent probe amplification.
Yoshikawa Y, Yamada Y, Emi M, Atanesyan L, Smout J, de Groot K, Savola S, Nakanishi-Shinkai Y, Kanematsu A, Nojima M, Ohmuraya M, Hashimoto-Tamaoki T, Yamamoto S. Yoshikawa Y, et al. Cancer Sci. 2022 Jan;113(1):297-307. doi: 10.1111/cas.15170. Epub 2021 Nov 3. Cancer Sci. 2022. PMID: 34687579 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical