Archaebacterial genomes: eubacterial form and eukaryotic content - PubMed (original) (raw)
Review
Archaebacterial genomes: eubacterial form and eukaryotic content
P J Keeling et al. Curr Opin Genet Dev. 1994 Dec.
Abstract
Since the recognition of the uniqueness and coherence of the archaebacteria (sometimes called Archaea), our perception of their role in early evolution has been modified repeatedly. The deluge of sequence data and rapidly improving molecular systematic methods have combined with a better understanding of archaebacterial molecular biology to describe a group that in some ways appears to be very similar to the eubacteria, though in others is more like the eukaryotes. The structure and contents of archaebacterial genomes are examined here, with an eye to their meaning in terms of the evolution of cell structure and function.
Similar articles
- The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
Cavalier-Smith T. Cavalier-Smith T. Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7-76. doi: 10.1099/00207713-52-1-7. Int J Syst Evol Microbiol. 2002. PMID: 11837318 Review. - Supertrees disentangle the chimerical origin of eukaryotic genomes.
Pisani D, Cotton JA, McInerney JO. Pisani D, et al. Mol Biol Evol. 2007 Aug;24(8):1752-60. doi: 10.1093/molbev/msm095. Epub 2007 May 15. Mol Biol Evol. 2007. PMID: 17504772 - Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.
Cotton JA, McInerney JO. Cotton JA, et al. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17252-5. doi: 10.1073/pnas.1000265107. Epub 2010 Sep 17. Proc Natl Acad Sci U S A. 2010. PMID: 20852068 Free PMC article. - Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes.
Gupta RS, Golding GB. Gupta RS, et al. J Mol Evol. 1993 Dec;37(6):573-82. doi: 10.1007/BF00182743. J Mol Evol. 1993. PMID: 8114110 - Comparative evaluation of gene expression in archaebacteria.
Zillig W, Palm P, Reiter WD, Gropp F, Pühler G, Klenk HP. Zillig W, et al. Eur J Biochem. 1988 May 2;173(3):473-82. doi: 10.1111/j.1432-1033.1988.tb14023.x. Eur J Biochem. 1988. PMID: 3131139 Review.
Cited by
- Genetic manipulation of Methanosarcina spp.
Kohler PR, Metcalf WW. Kohler PR, et al. Front Microbiol. 2012 Jul 24;3:259. doi: 10.3389/fmicb.2012.00259. eCollection 2012. Front Microbiol. 2012. PMID: 22837755 Free PMC article. - A pursuit of lineage-specific and niche-specific proteome features in the world of archaea.
Roy Chowdhury A, Dutta C. Roy Chowdhury A, et al. BMC Genomics. 2012 Jun 12;13:236. doi: 10.1186/1471-2164-13-236. BMC Genomics. 2012. PMID: 22691113 Free PMC article. - The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain.
Haddad A, Rose RW, Pohlschröder M. Haddad A, et al. J Bacteriol. 2005 Jun;187(12):4015-22. doi: 10.1128/JB.187.12.4015-4022.2005. J Bacteriol. 2005. PMID: 15937164 Free PMC article. - Perspectives on biotechnological applications of archaea.
Schiraldi C, Giuliano M, De Rosa M. Schiraldi C, et al. Archaea. 2002 Sep;1(2):75-86. doi: 10.1155/2002/436561. Archaea. 2002. PMID: 15803645 Free PMC article. Review. - The unique tuf2 gene from the kirromycin producer Streptomyces ramocissimus encodes a minor and kirromycin-sensitive elongation factor Tu.
Olsthoorn-Tieleman LN, Fischer SE, Kraal B. Olsthoorn-Tieleman LN, et al. J Bacteriol. 2002 Aug;184(15):4211-8. doi: 10.1128/JB.184.15.4211-4218.2002. J Bacteriol. 2002. PMID: 12107139 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources