Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents - PubMed (original) (raw)
. 1994 Dec 22;350(4):497-533.
doi: 10.1002/cne.903500402.
Affiliations
- PMID: 7890828
- DOI: 10.1002/cne.903500402
Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents
W A Suzuki et al. J Comp Neurol. 1994.
Abstract
Neuropsychological studies have recently demonstrated that the macaque monkey perirhinal (areas 35 and 36) and parahippocampal (areas TH and TF) cortices contribute importantly to normal memory function. Unfortunately, neuroanatomical information concerning the cytoarchitectonic organization and extrinsic connectivity of these cortical regions is meager. We investigated the organization of cortical inputs to the macaque monkey perirhinal and parahippocampal cortices by placing discrete injections of the retrograde tracers fast blue, diamidino yellow, and wheat germ agglutinin conjugated to horseradish peroxidase throughout these areas. We found that the macaque monkey perirhinal and parahippocampal cortices receive different complements of cortical inputs. The major cortical inputs to the perirhinal cortex arise from the unimodal visual areas TE and rostral TEO and from area TF of the parahippocampal cortex. The perirhinal cortex also receives projections from the dysgranular and granular subdivisions of the insular cortex and from area 13 of the orbitofrontal cortex. In contrast, area TF of the parahippocampal cortex receives its strongest input from more caudal visual areas V4, TEO, and caudal TE, as well as prominent inputs from polymodal association cortices, including the retrosplenial cortex and the dorsal bank of the superior temporal sulcus. Area TF also receives projections from areas 7a and LIP of the posterior parietal lobe, insular cortex, and areas 46, 13, 45, and 9 of the frontal lobe. As with area TF, area TH receives substantial projections from the retrosplenial cortex as well as moderate projections from the dorsal bank of the superior temporal sulcus; unlike area TF, area TH receives almost no innervation from areas TE and TEO. It does, however, receive relatively strong inputs from auditory association areas on the convexity of the superior temporal gyrus.
Similar articles
- Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex.
Lavenex P, Suzuki WA, Amaral DG. Lavenex P, et al. J Comp Neurol. 2002 Jun 10;447(4):394-420. doi: 10.1002/cne.10243. J Comp Neurol. 2002. PMID: 11992524 - Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP.
Martin-Elkins CL, Horel JA. Martin-Elkins CL, et al. J Comp Neurol. 1992 Jul 8;321(2):177-92. doi: 10.1002/cne.903210202. J Comp Neurol. 1992. PMID: 1380012 - Connections of the parahippocampal cortex. I. Cortical afferents.
Room P, Groenewegen HJ. Room P, et al. J Comp Neurol. 1986 Sep 22;251(4):415-50. doi: 10.1002/cne.902510402. J Comp Neurol. 1986. PMID: 2431008 - Topographical and laminar distribution of cortical input to the monkey entorhinal cortex.
Mohedano-Moriano A, Pro-Sistiaga P, Arroyo-Jimenez MM, Artacho-Pérula E, Insausti AM, Marcos P, Cebada-Sánchez S, Martínez-Ruiz J, Muñoz M, Blaizot X, Martinez-Marcos A, Amaral DG, Insausti R. Mohedano-Moriano A, et al. J Anat. 2007 Aug;211(2):250-60. doi: 10.1111/j.1469-7580.2007.00764.x. Epub 2007 Jun 15. J Anat. 2007. PMID: 17573826 Free PMC article. Review. - Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices.
Furtak SC, Wei SM, Agster KL, Burwell RD. Furtak SC, et al. Hippocampus. 2007;17(9):709-22. doi: 10.1002/hipo.20314. Hippocampus. 2007. PMID: 17604355 Review.
Cited by
- Cerebral hyperactivation across the Alzheimer's disease pathological cascade.
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Corriveau-Lecavalier N, et al. Brain Commun. 2024 Oct 25;6(6):fcae376. doi: 10.1093/braincomms/fcae376. eCollection 2024. Brain Commun. 2024. PMID: 39513091 Free PMC article. Review. - The medial entorhinal cortex encodes multisensory spatial information.
Nguyen D, Wang G, Wafa T, Fitzgerald T, Gu Y. Nguyen D, et al. Cell Rep. 2024 Oct 22;43(10):114813. doi: 10.1016/j.celrep.2024.114813. Epub 2024 Oct 11. Cell Rep. 2024. PMID: 39395171 Free PMC article. - Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI.
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh-Behbahani S, Legarreta JH, Yeterian E, Makris N, Rathi Y, O'Donnell LJ. Zhang F, et al. Hum Brain Mapp. 2024 Oct;45(14):e70041. doi: 10.1002/hbm.70041. Hum Brain Mapp. 2024. PMID: 39392220 Free PMC article. - A familiar face and person processing area in the human temporal pole.
Deen B, Husain G, Freiwald WA. Deen B, et al. Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2321346121. doi: 10.1073/pnas.2321346121. Epub 2024 Jul 2. Proc Natl Acad Sci U S A. 2024. PMID: 38954551 - Timescales of learning in prefrontal cortex.
Miller JA, Constantinidis C. Miller JA, et al. Nat Rev Neurosci. 2024 Sep;25(9):597-610. doi: 10.1038/s41583-024-00836-8. Epub 2024 Jun 27. Nat Rev Neurosci. 2024. PMID: 38937654 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous