Functional analysis of Gln-237 mutants of HhaI methyltransferase - PubMed (original) (raw)
Functional analysis of Gln-237 mutants of HhaI methyltransferase
S Mi et al. Nucleic Acids Res. 1995.
Free PMC article
Abstract
When the HhaI (cytosine-5) methyltransferase (M.HhaI) binds DNA it causes the target cytosine to be flipped 180 degrees out of the helix. The space becomes occupied by two amino acids, Ser-87 and Gln-237, which enter the helix from opposite sides and form a hydrogen bond to each other. Gln-237 may be involved in specific sequence recognition since it forms three hydrogen bonds to the orphan guanosine, which is the partner of the target cytosine. We have prepared all 19 mutants of Gln-237 and tested their biochemical properties. We find that mutations of this residue greatly affect the stability of the M.HhaI-DNA complex without affecting the enzyme's specificity for the target sequence. Surprisingly, all mutants retain detectable levels of enzymatic activity.
Similar articles
- The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing.
Reinisch KM, Chen L, Verdine GL, Lipscomb WN. Reinisch KM, et al. Cell. 1995 Jul 14;82(1):143-53. doi: 10.1016/0092-8674(95)90060-8. Cell. 1995. PMID: 7606780 - The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
Shieh FK, Youngblood B, Reich NO. Shieh FK, et al. J Mol Biol. 2006 Sep 22;362(3):516-27. doi: 10.1016/j.jmb.2006.07.030. Epub 2006 Jul 22. J Mol Biol. 2006. PMID: 16926025 - Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase.
Vilkaitis G, Dong A, Weinhold E, Cheng X, Klimasauskas S. Vilkaitis G, et al. J Biol Chem. 2000 Dec 8;275(49):38722-30. doi: 10.1074/jbc.m005278200. J Biol Chem. 2000. PMID: 11102456 - DNA-protein interactions. Flip out and modify.
Suck D. Suck D. Curr Biol. 1994 Mar 1;4(3):252-5. doi: 10.1016/s0960-9822(00)00057-9. Curr Biol. 1994. PMID: 7922330 Review. - Structure, function, and mechanism of HhaI DNA methyltransferases.
Sankpal UT, Rao DN. Sankpal UT, et al. Crit Rev Biochem Mol Biol. 2002;37(3):167-97. doi: 10.1080/10409230290771492. Crit Rev Biochem Mol Biol. 2002. PMID: 12139442 Review.
Cited by
- Low-frequency normal mode in DNA HhaI methyltransferase and motions of residues involved in the base flipping.
Luo J, Bruice TC. Luo J, et al. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16194-8. doi: 10.1073/pnas.0507913102. Epub 2005 Oct 19. Proc Natl Acad Sci U S A. 2005. PMID: 16236720 Free PMC article. - Specific targeting of cytosine methylation to DNA sequences in vivo.
Smith AE, Ford KG. Smith AE, et al. Nucleic Acids Res. 2007;35(3):740-54. doi: 10.1093/nar/gkl1053. Epub 2006 Dec 20. Nucleic Acids Res. 2007. PMID: 17182629 Free PMC article. - Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection using in vitro compartmentalisation.
Lee YF, Tawfik DS, Griffiths AD. Lee YF, et al. Nucleic Acids Res. 2002 Nov 15;30(22):4937-44. doi: 10.1093/nar/gkf617. Nucleic Acids Res. 2002. PMID: 12433997 Free PMC article. - AdoMet-dependent methylation, DNA methyltransferases and base flipping.
Cheng X, Roberts RJ. Cheng X, et al. Nucleic Acids Res. 2001 Sep 15;29(18):3784-95. doi: 10.1093/nar/29.18.3784. Nucleic Acids Res. 2001. PMID: 11557810 Free PMC article. Review. - Sensing DNA through DNA Charge Transport.
Zwang TJ, Tse ECM, Barton JK. Zwang TJ, et al. ACS Chem Biol. 2018 Jul 20;13(7):1799-1809. doi: 10.1021/acschembio.8b00347. Epub 2018 Jun 1. ACS Chem Biol. 2018. PMID: 29790735 Free PMC article. Review.
References
- J Biol Chem. 1987 Apr 5;262(10):4778-86 - PubMed
- Proc Natl Acad Sci U S A. 1986 Dec;83(23):9070-4 - PubMed
- Biochemistry. 1988 Jul 12;27(14):5204-10 - PubMed
- J Mol Biol. 1989 Mar 20;206(2):305-12 - PubMed
- Nucleic Acids Res. 1989 Apr 11;17(7):2421-35 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases