Functional analysis of Gln-237 mutants of HhaI methyltransferase - PubMed (original) (raw)
Functional analysis of Gln-237 mutants of HhaI methyltransferase
S Mi et al. Nucleic Acids Res. 1995.
Free PMC article
Abstract
When the HhaI (cytosine-5) methyltransferase (M.HhaI) binds DNA it causes the target cytosine to be flipped 180 degrees out of the helix. The space becomes occupied by two amino acids, Ser-87 and Gln-237, which enter the helix from opposite sides and form a hydrogen bond to each other. Gln-237 may be involved in specific sequence recognition since it forms three hydrogen bonds to the orphan guanosine, which is the partner of the target cytosine. We have prepared all 19 mutants of Gln-237 and tested their biochemical properties. We find that mutations of this residue greatly affect the stability of the M.HhaI-DNA complex without affecting the enzyme's specificity for the target sequence. Surprisingly, all mutants retain detectable levels of enzymatic activity.
Similar articles
- The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing.
Reinisch KM, Chen L, Verdine GL, Lipscomb WN. Reinisch KM, et al. Cell. 1995 Jul 14;82(1):143-53. doi: 10.1016/0092-8674(95)90060-8. Cell. 1995. PMID: 7606780 - The role of Arg165 towards base flipping, base stabilization and catalysis in M.HhaI.
Shieh FK, Youngblood B, Reich NO. Shieh FK, et al. J Mol Biol. 2006 Sep 22;362(3):516-27. doi: 10.1016/j.jmb.2006.07.030. Epub 2006 Jul 22. J Mol Biol. 2006. PMID: 16926025 - Functional roles of the conserved threonine 250 in the target recognition domain of HhaI DNA methyltransferase.
Vilkaitis G, Dong A, Weinhold E, Cheng X, Klimasauskas S. Vilkaitis G, et al. J Biol Chem. 2000 Dec 8;275(49):38722-30. doi: 10.1074/jbc.m005278200. J Biol Chem. 2000. PMID: 11102456 - DNA-protein interactions. Flip out and modify.
Suck D. Suck D. Curr Biol. 1994 Mar 1;4(3):252-5. doi: 10.1016/s0960-9822(00)00057-9. Curr Biol. 1994. PMID: 7922330 Review. - Structure, function, and mechanism of HhaI DNA methyltransferases.
Sankpal UT, Rao DN. Sankpal UT, et al. Crit Rev Biochem Mol Biol. 2002;37(3):167-97. doi: 10.1080/10409230290771492. Crit Rev Biochem Mol Biol. 2002. PMID: 12139442 Review.
Cited by
- Dynamic modes of the flipped-out cytosine during HhaI methyltransferase-DNA interactions in solution.
Klimasauskas S, Szyperski T, Serva S, Wüthrich K. Klimasauskas S, et al. EMBO J. 1998 Jan 2;17(1):317-24. doi: 10.1093/emboj/17.1.317. EMBO J. 1998. PMID: 9427765 Free PMC article. - Overproduction, purification and characterization of M.EcoHK31I, a bacterial methyltransferase with two polypeptides.
Lee KF, Liaw YC, Shaw PC. Lee KF, et al. Biochem J. 1996 Feb 15;314 ( Pt 1)(Pt 1):321-6. doi: 10.1042/bj3140321. Biochem J. 1996. PMID: 8660301 Free PMC article. - Low-frequency normal mode in DNA HhaI methyltransferase and motions of residues involved in the base flipping.
Luo J, Bruice TC. Luo J, et al. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16194-8. doi: 10.1073/pnas.0507913102. Epub 2005 Oct 19. Proc Natl Acad Sci U S A. 2005. PMID: 16236720 Free PMC article. - Specific targeting of cytosine methylation to DNA sequences in vivo.
Smith AE, Ford KG. Smith AE, et al. Nucleic Acids Res. 2007;35(3):740-54. doi: 10.1093/nar/gkl1053. Epub 2006 Dec 20. Nucleic Acids Res. 2007. PMID: 17182629 Free PMC article. - Mutational analysis of conserved residues in HhaI DNA methyltransferase.
Sankpal UT, Rao DN. Sankpal UT, et al. Nucleic Acids Res. 2002 Jun 15;30(12):2628-38. doi: 10.1093/nar/gkf380. Nucleic Acids Res. 2002. PMID: 12060679 Free PMC article.
References
- J Biol Chem. 1987 Apr 5;262(10):4778-86 - PubMed
- Proc Natl Acad Sci U S A. 1986 Dec;83(23):9070-4 - PubMed
- Biochemistry. 1988 Jul 12;27(14):5204-10 - PubMed
- J Mol Biol. 1989 Mar 20;206(2):305-12 - PubMed
- Nucleic Acids Res. 1989 Apr 11;17(7):2421-35 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases