Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity - PubMed (original) (raw)
Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity
V P Torchilin et al. Biochim Biophys Acta. 1994.
Abstract
The hypothetical model is built explaining the molecular mechanism of protective action of poly(ethylene glycol) on liposomes in vivo. The protective layer of the polymer on the liposome surface is considered as a statistical 'cloud' of polymer possible conformations in solution. Computer simulation was used to demonstrate that relatively a small number of liposome-grafted molecules of hydrophilic and flexible polymer can create a dense protective conformational cloud over the liposome surface preventing opsonizing protein molecules from contacting liposome. A more rigid polymer fails to form this dense protective cloud, even when hydrophilic. Computer simulation was also used to reveal possible heterogeneity of reactive sites on a polymer-coated liposome surface, and to estimate the optimal polymer-to-lipid ratio for efficient liposome protection. Experiments have been performed with the quenching of liposome-associated fluorescent label (nitrobenzoxadiazole or fluorescein) with protein (rhodamine-ovalbumin or anti-fluorescein antibody) from solution. It was shown that poly(ethylene glycol) grafting to liposomes hinders protein interaction with the liposome surface, whereas liposome-grafted dextran (more rigid polymer) in similar quantities does not affect protein-liposome interaction. Highly-reactive and low-reactive populations of chemically identical reactive sites have been found on polymer-coated liposomes. Experimental data satisfactory confirm the suggested mechanism for the longevity of polymer-modified liposome.
Similar articles
- Polymer-coated long-circulating microparticulate pharmaceuticals.
Torchilin VP. Torchilin VP. J Microencapsul. 1998 Jan-Feb;15(1):1-19. doi: 10.3109/02652049809006831. J Microencapsul. 1998. PMID: 9463803 Review. - Affinity liposomes in vivo: factors influencing target accumulation.
Torchilin VP. Torchilin VP. J Mol Recognit. 1996 Sep-Dec;9(5-6):335-46. doi: 10.1002/(sici)1099-1352(199634/12)9:5/6<335::aid-jmr309>3.0.co;2-0. J Mol Recognit. 1996. PMID: 9174907 Review. - New synthetic amphiphilic polymers for steric protection of liposomes in vivo.
Torchilin VP, Trubetskoy VS, Whiteman KR, Caliceti P, Ferruti P, Veronese FM. Torchilin VP, et al. J Pharm Sci. 1995 Sep;84(9):1049-53. doi: 10.1002/jps.2600840904. J Pharm Sci. 1995. PMID: 8537880 - The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes.
Kierstead PH, Okochi H, Venditto VJ, Chuong TC, Kivimae S, Fréchet JMJ, Szoka FC. Kierstead PH, et al. J Control Release. 2015 Sep 10;213:1-9. doi: 10.1016/j.jconrel.2015.06.023. Epub 2015 Jun 18. J Control Release. 2015. PMID: 26093095 Free PMC article. - A novel liposome surface modification agent that prolongs blood circulation and retains surface ligand reactivity.
Ishihara A, Yamauchi M, Tsuchiya T, Mimura Y, Tomoda Y, Katagiri A, Kamiya M, Nemoto H, Suzawa T, Yamasaki M. Ishihara A, et al. J Biomater Sci Polym Ed. 2012;23(16):2055-68. doi: 10.1163/092050611X605933. Epub 2012 May 8. J Biomater Sci Polym Ed. 2012. PMID: 22054261
Cited by
- Micelle-like nanoparticles as carriers for DNA and siRNA.
Navarro G, Pan J, Torchilin VP. Navarro G, et al. Mol Pharm. 2015 Feb 2;12(2):301-13. doi: 10.1021/mp5007213. Epub 2015 Jan 12. Mol Pharm. 2015. PMID: 25557580 Free PMC article. Review. - PEGylation in Pharmaceutical Development: Current Status and Emerging Trends in Macromolecular and Immunotherapeutic Drugs.
Santhanakrishnan KR, Koilpillai J, Narayanasamy D. Santhanakrishnan KR, et al. Cureus. 2024 Aug 12;16(8):e66669. doi: 10.7759/cureus.66669. eCollection 2024 Aug. Cureus. 2024. PMID: 39262507 Free PMC article. Review. - Nanoparticle characterization: state of the art, challenges, and emerging technologies.
Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Cho EJ, et al. Mol Pharm. 2013 Jun 3;10(6):2093-110. doi: 10.1021/mp300697h. Epub 2013 Mar 21. Mol Pharm. 2013. PMID: 23461379 Free PMC article. Review. - Immunogenicity of membrane-bound HIV-1 gp41 membrane-proximal external region (MPER) segments is dominated by residue accessibility and modulated by stereochemistry.
Kim M, Song L, Moon J, Sun ZY, Bershteyn A, Hanson M, Cain D, Goka S, Kelsoe G, Wagner G, Irvine D, Reinherz EL. Kim M, et al. J Biol Chem. 2013 Nov 1;288(44):31888-901. doi: 10.1074/jbc.M113.494609. Epub 2013 Sep 18. J Biol Chem. 2013. PMID: 24047898 Free PMC article. - Development and assessment of the efficacy and safety of human lung-targeting liposomal methylprednisolone crosslinked with nanobody.
Weng D, Yin ZF, Chen SS, He X, Li N, Chen T, Qiu H, Zhao MM, Wu Q, Zhou NY, Lu LQ, Tang DL, Song JC, Li HP. Weng D, et al. Drug Deliv. 2021 Dec;28(1):1419-1431. doi: 10.1080/10717544.2021.1921073. Drug Deliv. 2021. PMID: 34223777 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources