Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury - PubMed (original) (raw)

Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury

J Chen et al. Am J Physiol. 1994 Sep.

Abstract

The association/dissociation of ezrin, a microvillar membrane-cytoskeleton linker, was studied to search for the initial step leading to anoxia-induced brush-border breakdown in a rabbit proximal tubule suspension. Electron microscopy studies display time-dependent damage to the microvilli during anoxia; immunoblots demonstrate the dissociation of ezrin from the cytoskeleton, reflected by the significant decrease in Triton X-100-insoluble ezrin from control (91%) to 39% after 30 min. Simultaneously, Triton X-100-soluble and extracellular ezrin increased with no change in total ezrin, Triton X-100 solubility of actin, or total intracellular protein. Parallel immunocytochemistry studies show diffusion of ezrin from the brush border, where ezrin is highly colocalized with F-actin during normoxia into the cytoplasm. Thirty minutes of reoxygenation following 30 min of anoxia causes recovery of the microvillar structure and reassociation of ezrin to the cytoskeleton and the brush border. Application of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (4 mM) or inhibition of intracellular calpain or calcineurin do not prevent the dissociation of ezrin during anoxia. We conclude that ezrin-cytoskeletal dissociation may initiate microvillar breakdown during anoxia via calcium-independent mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources