The electrostatic basis for the interfacial binding of secretory phospholipases A2 - PubMed (original) (raw)
Comparative Study
The electrostatic basis for the interfacial binding of secretory phospholipases A2
D L Scott et al. Biophys J. 1994 Aug.
Abstract
Biochemical and structural data suggest that electrostatic forces play a critical role in the binding of secretory phospholipases A2 to substrate aggregates (micelles, vesicles, monolayers, and membranes). This initial binding (adsorption) of the enzyme to the interface is kinetically distinct from the subsequent binding of substrate to the buried active site. Thus, in the absence of specific active-site interactions, electrostatic forces operating at the molecular surface may orient and hold the enzyme at the interface. We have calculated the electrostatic potentials for 10 species of secretory phospholipases A2 whose atomic coordinates have been determined by x-ray crystallography. Most of these enzymes show a marked electrostatic sidedness that is accentuated to a variable degree by the presence of the essential cofactor calcium ion. This asymmetry suggests a discrete interfacial binding region on the protein's surface, the location of which is in general agreement with proposals derived from the results of chemical modification, mutational, and crystallographic experiments.
Similar articles
- Mapping the interfacial binding surface of human secretory group IIa phospholipase A2.
Snitko Y, Koduri RS, Han SK, Othman R, Baker SF, Molini BJ, Wilton DC, Gelb MH, Cho W. Snitko Y, et al. Biochemistry. 1997 Nov 25;36(47):14325-33. doi: 10.1021/bi971200z. Biochemistry. 1997. PMID: 9398150 - Phospholipase A2 engineering. Structural and functional roles of the highly conserved active site residue aspartate-99.
Sekar K, Yu BZ, Rogers J, Lutton J, Liu X, Chen X, Tsai MD, Jain MK, Sundaralingam M. Sekar K, et al. Biochemistry. 1997 Mar 18;36(11):3104-14. doi: 10.1021/bi961576x. Biochemistry. 1997. PMID: 9115986 - Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2.
Gelb MH, Jain MK, Hanel AM, Berg OG. Gelb MH, et al. Annu Rev Biochem. 1995;64:653-88. doi: 10.1146/annurev.bi.64.070195.003253. Annu Rev Biochem. 1995. PMID: 7574497 Review. - The interfacial binding surface of phospholipase A2s.
Winget JM, Pan YH, Bahnson BJ. Winget JM, et al. Biochim Biophys Acta. 2006 Nov;1761(11):1260-9. doi: 10.1016/j.bbalip.2006.08.002. Epub 2006 Aug 3. Biochim Biophys Acta. 2006. PMID: 16962825 Review.
Cited by
- Charge reversal of ammodytoxin A, a phospholipase A2-toxin, does not abolish its neurotoxicity.
Prijatelj P, Copic A, Krizaj I, Gubensek F, Pungercar J. Prijatelj P, et al. Biochem J. 2000 Dec 1;352 Pt 2(Pt 2):251-5. doi: 10.1042/0264-6021:3520251. Biochem J. 2000. PMID: 11085916 Free PMC article. - An aromatic, but not a basic, residue is involved in the toxicity of group-II phospholipase A2 neurotoxins.
Pungercar J, Krizaj I, Liang NS, Gubensek F. Pungercar J, et al. Biochem J. 1999 Jul 1;341 ( Pt 1)(Pt 1):139-45. Biochem J. 1999. PMID: 10377255 Free PMC article. - Engineered nanoparticles mimicking cell membranes for toxin neutralization.
Fang RH, Luk BT, Hu CM, Zhang L. Fang RH, et al. Adv Drug Deliv Rev. 2015 Aug 1;90:69-80. doi: 10.1016/j.addr.2015.04.001. Epub 2015 Apr 11. Adv Drug Deliv Rev. 2015. PMID: 25868452 Free PMC article. Review. - NMR studies of electrostatic potential distribution around biologically important molecules.
Likhtenshtein GI, Adin I, Novoselsky A, Shames A, Vaisbuch I, Glaser R. Likhtenshtein GI, et al. Biophys J. 1999 Jul;77(1):443-53. doi: 10.1016/S0006-3495(99)76902-X. Biophys J. 1999. PMID: 10388770 Free PMC article.
References
- Biochemistry. 1972 Mar 14;11(6):1030-41 - PubMed
- Biochemistry. 1993 Nov 9;32(44):11838-46 - PubMed
- Nature. 1981 Feb 12;289(5798):604-6 - PubMed
- Toxicon. 1981;19(1):141-52 - PubMed
- J Mol Biol. 1983 Jul 25;168(1):163-79 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources