Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis - PubMed (original) (raw)

Comparative Study

Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis

H Bolhuis et al. J Bacteriol. 1994 Nov.

Abstract

Three mutants of Lactococcus lactis subsp. lactis MG1363, termed EthR, DauR, and RhoR, were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and functionally unrelated drugs, among which were typical substrates of the mammalian multidrug transporter (P-glycoprotein) such as daunomycin, quinine, actinomycin D, gramicidin D, and rhodamine 6G. The three multidrug-resistant strains showed an increased rate of energy-dependent ethidium and daunomycin efflux compared with that of the wild-type strain. This suggests that resistance to these toxic compounds is at least partly due to active efflux. Efflux of ethidium from the EthR strain could occur against a 37-fold inwardly directed concentration gradient. In all strains, ethidium efflux was inhibited by reserpine, a well-known inhibitor of P-glycoprotein. Ionophores which selectively dissipate the membrane potential or the pH gradient across the membrane inhibited ethidium and daunomycin efflux in the wild-type strain, corresponding with a proton motive force-driven efflux system. The ethidium efflux system in the EthR strain, on the other hand, was inhibited by ortho-vanadate and not upon dissipation of the proton motive force, which suggests the involvement of ATP in the energization of transport. The partial inhibition of ethidium efflux by ortho-vanadate and nigericin in the DauR and RhoR strains suggest that a proton motive force-dependent and an ATP-dependent system are expressed simultaneously. This is the first report of an ATP-dependent transport system in prokaryotes which confers multidrug resistance to the organism.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8938-42 - PubMed
    1. Antimicrob Agents Chemother. 1992 Apr;36(4):695-703 - PubMed
    1. Mol Microbiol. 1990 Dec;4(12):2051-62 - PubMed
    1. J Bacteriol. 1991 Jul;173(14):4493-502 - PubMed
    1. Antimicrob Agents Chemother. 1993 May;37(5):1086-94 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources