Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement - PubMed (original) (raw)
Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement
L M Rice et al. Proteins. 1994 Aug.
Abstract
A reduced variable conformational sampling strategy for macromolecules based on molecular dynamics in torsion angle space is evaluated using crystallographic refinement as a prototypical search problem. Bae and Haug's algorithm for constrained dynamics [Bae, D.S., Haug, E.J. A recursive formulation for constrained mechanical system dynamics. Mech. Struct. Mach. 15:359-382, 1987], originally developed for robotics, was used. Their formulation solves the equations of motion exactly for arbitrary holonomic constraints, and hence differs from commonly used approximation algorithms. It uses gradients calculated in Cartesian coordinates, and thus also differs from internal coordinate formulations. Molecular dynamics can be carried out at significantly higher temperatures due to the elimination of the high frequency bond and angle vibrations. The sampling strategy presented here combines high temperature torsion angle dynamics with repeated trajectories using different initial velocities. The best solutions can be identified by the free R value, or the R value if experimental phase information is appropriately included in the refinement. Applications to crystallographic refinement. Applications to crystallographic refinement show a significantly increased radius of convergence over conventional techniques. For a test system with diffraction data to 2 A resolution, slow-cooling protocols fail to converge if the backbone atom root mean square (rms) coordinate deviation from the crystal structure is greater than 1.25 A, but torsion angle refinement can correct backbone atom rms coordinate deviations up to approximately 1.7 A.
Similar articles
- Solution structure of an isolated antibody VL domain.
Constantine KL, Friedrichs MS, Metzler WJ, Wittekind M, Hensley P, Mueller L. Constantine KL, et al. J Mol Biol. 1994 Feb 11;236(1):310-27. doi: 10.1006/jmbi.1994.1137. J Mol Biol. 1994. PMID: 8107112 - Application of torsion angle molecular dynamics for efficient sampling of protein conformations.
Chen J, Im W, Brooks CL 3rd. Chen J, et al. J Comput Chem. 2005 Nov 30;26(15):1565-78. doi: 10.1002/jcc.20293. J Comput Chem. 2005. PMID: 16145655 - Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation.
Stein EG, Rice LM, Brünger AT. Stein EG, et al. J Magn Reson. 1997 Jan;124(1):154-64. doi: 10.1006/jmre.1996.1027. J Magn Reson. 1997. PMID: 9424305 - Exploration of disorder in protein structures by X-ray restrained molecular dynamics.
Kuriyan J, Osapay K, Burley SK, Brünger AT, Hendrickson WA, Karplus M. Kuriyan J, et al. Proteins. 1991;10(4):340-58. doi: 10.1002/prot.340100407. Proteins. 1991. PMID: 1946343 - Recent developments for the efficient crystallographic refinement of macromolecular structures.
Brünger AT, Adams PD, Rice LM. Brünger AT, et al. Curr Opin Struct Biol. 1998 Oct;8(5):606-11. doi: 10.1016/s0959-440x(98)80152-8. Curr Opin Struct Biol. 1998. PMID: 9818265 Review.
Cited by
- A faulty interaction between SOD1 and hCCS in neurodegenerative disease.
Wright GS, Antonyuk SV, Hasnain SS. Wright GS, et al. Sci Rep. 2016 Jun 10;6:27691. doi: 10.1038/srep27691. Sci Rep. 2016. PMID: 27282955 Free PMC article. - Structural studies of duck delta2 crystallin mutants provide insight into the role of Thr161 and the 280s loop in catalysis.
Sampaleanu LM, Codding PW, Lobsanov YD, Tsai M, Smith GD, Horvatin C, Howell PL. Sampaleanu LM, et al. Biochem J. 2004 Dec 1;384(Pt 2):437-47. doi: 10.1042/BJ20040656. Biochem J. 2004. PMID: 15320872 Free PMC article. - Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription.
Chen HT, Legault P, Glushka J, Omichinski JG, Scott RA. Chen HT, et al. Protein Sci. 2000 Sep;9(9):1743-52. doi: 10.1110/ps.9.9.1743. Protein Sci. 2000. PMID: 11045620 Free PMC article. - Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold.
Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. Luu KN, et al. J Am Chem Soc. 2006 Aug 2;128(30):9963-70. doi: 10.1021/ja062791w. J Am Chem Soc. 2006. PMID: 16866556 Free PMC article. - NMR structure of the N-terminal domain of the replication initiator protein DnaA.
Lowery TJ, Pelton JG, Chandonia JM, Kim R, Yokota H, Wemmer DE. Lowery TJ, et al. J Struct Funct Genomics. 2007 Mar;8(1):11-7. doi: 10.1007/s10969-007-9022-7. Epub 2007 Aug 7. J Struct Funct Genomics. 2007. PMID: 17680349
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources