A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation - PubMed (original) (raw)
A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation
A Høj et al. EMBO J. 1994.
Abstract
Transcriptional activation of heat shock genes is mediated by a presynthesized nuclear protein, the heat shock factor (HSF), which transiently converts from an inactive to an active form in response to hyperthermia. It has been suggested that hyperphosphorylation of HSF upon heat shock triggers activation through the induction of a conformational change unmasking transcriptional activator domains. Here we report that a short conserved element is involved in returning yeast HSF to the inactive state after heat shock and show that deactivation can be enhanced by phosphorylation of adjacent serine residues. These results suggest that phosphorylation of HSF in yeast serves as a regulatory mechanism to deactivate HSF, rather than being involved in its activation.
Similar articles
- Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
Hashikawa N, Sakurai H. Hashikawa N, et al. Mol Cell Biol. 2004 May;24(9):3648-59. doi: 10.1128/MCB.24.9.3648-3659.2004. Mol Cell Biol. 2004. PMID: 15082761 Free PMC article. - Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity.
Chen Y, Barlev NA, Westergaard O, Jakobsen BK. Chen Y, et al. EMBO J. 1993 Dec 15;12(13):5007-18. doi: 10.1002/j.1460-2075.1993.tb06194.x. EMBO J. 1993. PMID: 8262043 Free PMC article. - A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor.
Jakobsen BK, Pelham HR. Jakobsen BK, et al. EMBO J. 1991 Feb;10(2):369-75. doi: 10.1002/j.1460-2075.1991.tb07958.x. EMBO J. 1991. PMID: 1899375 Free PMC article. - Heat shock transcription factors: structure and regulation.
Wu C. Wu C. Annu Rev Cell Dev Biol. 1995;11:441-69. doi: 10.1146/annurev.cb.11.110195.002301. Annu Rev Cell Dev Biol. 1995. PMID: 8689565 Review. - Heat shock factor and the heat shock response.
Sorger PK. Sorger PK. Cell. 1991 May 3;65(3):363-6. doi: 10.1016/0092-8674(91)90452-5. Cell. 1991. PMID: 2018972 Review. No abstract available.
Cited by
- Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system.
Verghese J, Abrams J, Wang Y, Morano KA. Verghese J, et al. Microbiol Mol Biol Rev. 2012 Jun;76(2):115-58. doi: 10.1128/MMBR.05018-11. Microbiol Mol Biol Rev. 2012. PMID: 22688810 Free PMC article. Review. - Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress.
Guettouche T, Boellmann F, Lane WS, Voellmy R. Guettouche T, et al. BMC Biochem. 2005 Mar 11;6:4. doi: 10.1186/1471-2091-6-4. BMC Biochem. 2005. PMID: 15760475 Free PMC article. - Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.
Nussbaum I, Weindling E, Jubran R, Cohen A, Bar-Nun S. Nussbaum I, et al. PLoS One. 2014 Oct 30;9(10):e111505. doi: 10.1371/journal.pone.0111505. eCollection 2014. PLoS One. 2014. PMID: 25356557 Free PMC article. - Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation.
Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS, Pincus D. Zheng X, et al. Elife. 2016 Nov 10;5:e18638. doi: 10.7554/eLife.18638. Elife. 2016. PMID: 27831465 Free PMC article.
References
- Cell. 1982 Sep;30(2):517-28 - PubMed
- EMBO J. 1993 Dec 15;12(13):5007-18 - PubMed
- Nature. 1985 Sep 5-11;317(6032):84-7 - PubMed
- Mol Cell Biol. 1987 Apr;7(4):1530-4 - PubMed
- Nature. 1987 Jun 25-Jul 1;327(6124):727-30 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases