Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes - PubMed (original) (raw)
Comparative Study
Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes
W A Devane et al. Proc Natl Acad Sci U S A. 1994.
Abstract
Anandamide, an endogenous eicosanoid derivative (arachidonoylethanolamide), binds to the cannabinoid receptor, a member of the G protein-coupled superfamily. It also inhibits both adenylate cyclase and N-type calcium channel opening. The enzymatic synthesis of anandamide in bovine brain tissue was examined by incubating brain membranes with [14C]ethanolamine and arachidonic acid. Following incubation and extraction into toluene, a radioactive product was identified which had the same Rf value as authentic anandamide in several thin-layer chromatographic systems. When structurally similar fatty acid substrates were compared, arachidonic acid exhibited the lowest EC50 and the highest activity for enzymatic formation of the corresponding ethanolamides. The concentration-response curve of arachidonic acid exhibited a steep slope, and at higher concentrations arachidonate inhibited enzymatic activity. When brain homogenates were separated into subcellular fractions by sucrose density gradient centrifugation, anandamide synthase activity was highest in fractions enriched in synaptic vesicles, myelin, and microsomal and synaptosomal membranes. When several areas of brain were examined, anandamide synthase activity was found to be highest in the hippocampus, followed by the thalamus, cortex, and striatum, and lowest in the cerebellum, pons, and medulla. The ability of brain tissue to enzymatically synthesize anandamide and the existence of specific receptors for this eicosanoid suggest the presence of anandamide-containing (anandaergic) neurons.
Similar articles
- Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization.
Desarnaud F, Cadas H, Piomelli D. Desarnaud F, et al. J Biol Chem. 1995 Mar 17;270(11):6030-5. doi: 10.1074/jbc.270.11.6030. J Biol Chem. 1995. PMID: 7890734 - A hydrolase enzyme inactivating endogenous ligands for cannabinoid receptors.
Ueda N, Goparaju SK, Katayama K, Kurahashi Y, Suzuki H, Yamamoto S. Ueda N, et al. J Med Invest. 1998 Aug;45(1-4):27-36. J Med Invest. 1998. PMID: 9864962 Review. - Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain.
Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB. Hillard CJ, et al. Biochim Biophys Acta. 1995 Aug 3;1257(3):249-56. doi: 10.1016/0005-2760(95)00087-s. Biochim Biophys Acta. 1995. PMID: 7647100 - Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine.
Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, Ishima Y, Waku K. Sugiura T, et al. Eur J Biochem. 1996 Aug 15;240(1):53-62. doi: 10.1111/j.1432-1033.1996.0053h.x. Eur J Biochem. 1996. PMID: 8797835 - Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance.
Sugiura T, Kobayashi Y, Oka S, Waku K. Sugiura T, et al. Prostaglandins Leukot Essent Fatty Acids. 2002 Feb-Mar;66(2-3):173-92. doi: 10.1054/plef.2001.0356. Prostaglandins Leukot Essent Fatty Acids. 2002. PMID: 12052034 Review.
Cited by
- Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets.
Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V. Berger A, et al. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6402-6. doi: 10.1073/pnas.101119098. Epub 2001 May 15. Proc Natl Acad Sci U S A. 2001. PMID: 11353819 Free PMC article. - Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver.
Mukhopadhyay B, Cinar R, Yin S, Liu J, Tam J, Godlewski G, Harvey-White J, Mordi I, Cravatt BF, Lotersztajn S, Gao B, Yuan Q, Schuebel K, Goldman D, Kunos G. Mukhopadhyay B, et al. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6323-8. doi: 10.1073/pnas.1017689108. Epub 2011 Mar 7. Proc Natl Acad Sci U S A. 2011. PMID: 21383171 Free PMC article. - The initiation of synaptic 2-AG mobilization requires both an increased supply of diacylglycerol precursor and increased postsynaptic calcium.
Shonesy BC, Winder DG, Patel S, Colbran RJ. Shonesy BC, et al. Neuropharmacology. 2015 Apr;91:57-62. doi: 10.1016/j.neuropharm.2014.11.026. Epub 2014 Dec 4. Neuropharmacology. 2015. PMID: 25484252 Free PMC article. - The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling.
Paria BC, Das SK, Dey SK. Paria BC, et al. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9460-4. doi: 10.1073/pnas.92.21.9460. Proc Natl Acad Sci U S A. 1995. PMID: 7568154 Free PMC article. - Chicken adaptive response to low energy diet: main role of the hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic approach.
Jehl F, Désert C, Klopp C, Brenet M, Rau A, Leroux S, Boutin M, Lagoutte L, Muret K, Blum Y, Esquerré D, Gourichon D, Burlot T, Collin A, Pitel F, Benani A, Zerjal T, Lagarrigue S. Jehl F, et al. BMC Genomics. 2019 Dec 30;20(1):1033. doi: 10.1186/s12864-019-6384-8. BMC Genomics. 2019. PMID: 31888468 Free PMC article.
References
- Proc Natl Acad Sci U S A. 1990 Mar;87(5):1932-6 - PubMed
- Biochem Pharmacol. 1994 Feb 11;47(4):711-5 - PubMed
- Trends Neurosci. 1990 Oct;13(10):420-3 - PubMed
- Biochem J. 1991 Oct 1;279 ( Pt 1):129-34 - PubMed
- Proc Natl Acad Sci U S A. 1992 May 1;89(9):3825-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources