Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer - PubMed (original) (raw)
. 1994 Jul 15;265(5170):383-6.
doi: 10.1126/science.8023158.
Affiliations
- PMID: 8023158
- DOI: 10.1126/science.8023158
Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer
S Steinbacher et al. Science. 1994.
Abstract
The tailspike protein (TSP) of Salmonella typhimurium phage P22 is a part of the apparatus by which the phage attaches to the bacterial host and hydrolyzes the O antigen. It has served as a model system for genetic and biochemical analysis of protein folding. The x-ray structure of a shortened TSP (residues 109 to 666) was determined to a 2.0 angstrom resolution. Each subunit of the homotrimer contains a large parallel beta helix. The interdigitation of the polypeptide chains at the carboxyl termini is important to protrimer formation in the folding pathway and to thermostability of the mature protein.
Similar articles
- Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein.
Benton CB, King J, Clark PL. Benton CB, et al. Biochemistry. 2002 Apr 23;41(16):5093-103. doi: 10.1021/bi0115582. Biochemistry. 2002. PMID: 11955057 - The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization.
Kreisberg JF, Betts SD, Haase-Pettingell C, King J. Kreisberg JF, et al. Protein Sci. 2002 Apr;11(4):820-30. doi: 10.1110/ps.3440102. Protein Sci. 2002. PMID: 11910025 Free PMC article. - Phage tailspike protein. A fishy tale of protein folding.
Goldenberg DP, Creighton TE. Goldenberg DP, et al. Curr Biol. 1994 Nov 1;4(11):1026-9. doi: 10.1016/s0960-9822(00)00234-7. Curr Biol. 1994. PMID: 7874487 Review. - Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein.
Seckler R. Seckler R. J Struct Biol. 1998;122(1-2):216-22. doi: 10.1006/jsbi.1998.3974. J Struct Biol. 1998. PMID: 9724623 - There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike.
Betts S, King J. Betts S, et al. Structure. 1999 Jun 15;7(6):R131-9. doi: 10.1016/s0969-2126(99)80078-1. Structure. 1999. PMID: 10404587 Review.
Cited by
- Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages.
Casjens SR, Grose JH. Casjens SR, et al. Virology. 2016 Sep;496:255-276. doi: 10.1016/j.virol.2016.05.022. Epub 2016 Jun 30. Virology. 2016. PMID: 27372181 Free PMC article. - Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches.
Lawrence JG, Hatfull GF, Hendrix RW. Lawrence JG, et al. J Bacteriol. 2002 Sep;184(17):4891-905. doi: 10.1128/JB.184.17.4891-4905.2002. J Bacteriol. 2002. PMID: 12169615 Free PMC article. - Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria.
Kim S, Kim SH, Rahman M, Kim J. Kim S, et al. J Microbiol. 2018 Dec;56(12):917-925. doi: 10.1007/s12275-018-8310-1. Epub 2018 Oct 25. J Microbiol. 2018. PMID: 30361974 - 'Let the phage do the work': using the phage P22 coat protein structures as a framework to understand its folding and assembly mutants.
Teschke CM, Parent KN. Teschke CM, et al. Virology. 2010 Jun 5;401(2):119-30. doi: 10.1016/j.virol.2010.02.017. Epub 2010 Mar 16. Virology. 2010. PMID: 20236676 Free PMC article. Review. - Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states.
Spatara ML, Roberts CJ, Robinson AS. Spatara ML, et al. Biophys Chem. 2009 May;141(2-3):214-21. doi: 10.1016/j.bpc.2009.02.001. Epub 2009 Feb 12. Biophys Chem. 2009. PMID: 19258192 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous