Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus - PubMed (original) (raw)

Differential glycosylation of the GLUT1 glucose transporter in brain capillaries and choroid plexus

A K Kumagai et al. Biochim Biophys Acta. 1994.

Abstract

The sodium-independent GLUT1 glucose transporter is expressed in high density in human erythrocytes and in tissues which serve a barrier function. In the polarized endothelial cells of the brain capillaries, which comprise the blood-brain barrier (BBB), GLUT1 is expressed on both apical and basolateral membranes; however, in the epithelium of the choroid plexus, GLUT1 expression is restricted to the basolateral surface. The present study examined whether these differences in subcellular localization of GLUT1 at the BBB and choroid plexus could be correlated with differential N-linked or O-linked glycosylation of the protein. Western blot analysis of solubilized brain capillaries (BC) and choroid plexus (CP) revealed that while the BC GLUT1 had an average molecular mass identical to that of the purified human erythrocyte transporter (54 kDa), the CP GLUT1 was of lower molecular mass (47 kDa). Treatment of brain capillaries and choroid plexus with N-glycanase resulted in a shift in the mobility of the GLUT1 of both samples to a lower molecular mass of 42 kDa; however, in contrast, treatment with O-glycanase produced no change in the mobility patterns of GLUT1, but did result in O-linked deglycosylation of another BBB marker, gamma-glutamyl transpeptidase. In conclusion, BBB and choroid plexus GLUT1 are subject to differential N-linked glycosylation with the protein having an N-linked carbohydrate side chain of higher molecular mass at the BBB in comparison to the choroid plexus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources